Mostrar el registro sencillo del ítem
dc.contributor.author | Iborra Bernad, María del Consuelo | es_ES |
dc.contributor.author | García Segovia, Purificación | es_ES |
dc.contributor.author | Martínez Monzó, Javier | es_ES |
dc.date.accessioned | 2016-05-12T10:38:00Z | |
dc.date.available | 2016-05-12T10:38:00Z | |
dc.date.issued | 2015-08 | |
dc.identifier.issn | 0022-1147 | |
dc.identifier.uri | http://hdl.handle.net/10251/63962 | |
dc.description.abstract | [EN] In this paper, physico-chemical and structural properties of cut and cooked purple-flesh potato, green bean pods, and carrots have been studied. Three different cooking methods have been applied: traditional cooking (boiling water at 100 °C), cook-vide (at 80 and 90 °C) and sous-vide (at 80 °C and 90 °C). Similar firmness was obtained in potato applying the same cooking time using traditional cooking (100 °C), and cook-vide and sous-vide at 90 °C, while in green beans and carrots the application of the sous-vide (90 °C) required longer cooking times than cook-vide (90 °C) and traditional cooking (100 °C). Losses in anthocyanins (for purple-flesh potatoes) and ascorbic acid (for green beans) were higher applying traditional cooking. β-Carotene extraction increased in carrots with traditional cooking and cook-vide (P < 0.05). Cryo-SEM micrographs suggested higher swelling pressure of starch in potatoes cells cooked in contact with water, such as traditional cooking and cook-vide. Traditional cooking was the most aggressive treatment in green beans because the secondary walls were reduced compared with sous-vide and cook-vide. Sous-vide preserved organelles in the carrot cells, which could explain the lower extraction of β-carotene compared with cook-vide and traditional cooking. Sous-vide cooking of purple-flesh potato is recommended to maintain its high anthocyanin content. Traditional boiling could be recommended for carrots because increase β-carotenes availability. For green beans, cook-vide, and sous-vide provided products with higher ascorbic acid content. | es_ES |
dc.description.sponsorship | Author Iborra-Bernad was supported by the Generalitat Valenciana under FPI (Researcher Formation Program) grant. Special thanks to the Electron Microscopy Service of the UPV. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Food Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Color | es_ES |
dc.subject | Cooking treatment | es_ES |
dc.subject | Firmness | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Electron Microscopy Service of the UPV | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Physico-Chemical and Structural Characteristics of Vegetables Cooked Under Sous-Vide, Cook-Vide, and Conventional Boiling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/1750-3841.12950 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Iborra Bernad, MDC.; García Segovia, P.; Martínez Monzó, J. (2015). Physico-Chemical and Structural Characteristics of Vegetables Cooked Under Sous-Vide, Cook-Vide, and Conventional Boiling. Journal of Food Science. 80(8):E1725-E1734. doi:10.1111/1750-3841.12950 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1111/1750-3841.12950 | es_ES |
dc.description.upvformatpinicio | E1725 | es_ES |
dc.description.upvformatpfin | E1734 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 80 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 293483 | es_ES |
dc.identifier.eissn | 1750-3841 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Aherne, S. A., Daly, T., Jiwan, M. A., O’Sullivan, L., & O’Brien, N. M. (2010). Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model. Food Research International, 43(5), 1449-1454. doi:10.1016/j.foodres.2010.04.026 | es_ES |
dc.description.references | Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15-30. doi:10.1016/j.ijgfs.2011.11.002 | es_ES |
dc.description.references | Barrett, D. M., & Lloyd, B. (2011). Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture, 92(1), 7-22. doi:10.1002/jsfa.4718 | es_ES |
dc.description.references | BERMUDEZSOTO, M., TOMASBARBERAN, F., & GARCIACONESA, M. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102(3), 865-874. doi:10.1016/j.foodchem.2006.06.025 | es_ES |
dc.description.references | Chiavaro, E., Barbanti, D., Vittadini, E., & Massini, R. (2006). The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). Journal of Food Engineering, 77(1), 169-178. doi:10.1016/j.jfoodeng.2005.06.060 | es_ES |
dc.description.references | De Baerdemaeker, J., & Nicolaï, B. M. (1995). Equipment considerations for sous vide cooking. Food Control, 6(4), 229-236. doi:10.1016/0956-7135(95)00008-f | es_ES |
dc.description.references | García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2007). Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). Journal of Food Engineering, 80(3), 813-821. doi:10.1016/j.jfoodeng.2006.07.010 | es_ES |
dc.description.references | García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2008). Textural properties of potatoes (Solanum tuberosum L., cv. Monalisa) as affected by different cooking processes. Journal of Food Engineering, 88(1), 28-35. doi:10.1016/j.jfoodeng.2007.12.001 | es_ES |
dc.description.references | Greve, L. C., McArdle, R. N., Gohlke, J. R., & Labavitch, J. M. (1994). Impact of Heating on Carrot Firmness: Changes in Cell Wall Components. Journal of Agricultural and Food Chemistry, 42(12), 2900-2906. doi:10.1021/jf00048a048 | es_ES |
dc.description.references | Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2007). Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. Innovative Food Science & Emerging Technologies, 8(3), 407-412. doi:10.1016/j.ifset.2007.03.014 | es_ES |
dc.description.references | Hui, Y., Ghazala, S., Graham, D., Murrell, K., & Nip, W.-K. (Eds.). (2003). Handbook of Vegetable Preservation and Processing. Food Science and Technology. doi:10.1201/9780203912911 | es_ES |
dc.description.references | Iborra-Bernad, C., Philippon, D., García-Segovia, P., & Martínez-Monzó, J. (2013). Optimizing the texture and color of sous-vide and cook-vide green bean pods. LWT - Food Science and Technology, 51(2), 507-513. doi:10.1016/j.lwt.2012.12.001 | es_ES |
dc.description.references | Iborra-Bernad, C., Tárrega, A., García-Segovia, P., & Martínez-Monzó, J. (2013). Comparison of Vacuum Treatments and Traditional Cooking Using Instrumental and Sensory Analysis. Food Analytical Methods, 7(2), 400-408. doi:10.1007/s12161-013-9638-0 | es_ES |
dc.description.references | Iborra-Bernad, C., García-Segovia, P., & Martínez-Monzó, J. (2014). Effect of vacuum cooking treatment on physicochemical and structural characteristics of purple-flesh potato. International Journal of Food Science & Technology, 49(4), 943-951. doi:10.1111/ijfs.12385 | es_ES |
dc.description.references | Iborra-Bernad, C., Tárrega, A., García-Segovia, P., & Martínez-Monzó, J. (2014). Advantages of sous-vide cooked red cabbage: Structural, nutritional and sensory aspects. LWT - Food Science and Technology, 56(2), 451-460. doi:10.1016/j.lwt.2013.12.027 | es_ES |
dc.description.references | Jarvis, M. C., Mackenzie, E., & Duncan, H. J. (1992). The textural analysis of cooked potato. 2. Swelling pressure of starch during gelatinisation. Potato Research, 35(1), 93-102. doi:10.1007/bf02357730 | es_ES |
dc.description.references | Kamiloglu, S., & Capanoglu, E. (2013). Investigating thein vitrobioaccessibility of polyphenols in fresh and sun-dried figs (Ficus caricaL.). International Journal of Food Science & Technology, 48(12), 2621-2629. doi:10.1111/ijfs.12258 | es_ES |
dc.description.references | Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609-615. doi:10.1016/j.foodchem.2005.09.079 | es_ES |
dc.description.references | Lachman, J., Hamouz, K., Musilová, J., Hejtmánková, K., Kotíková, Z., Pazderů, K., … Cimr, J. (2013). Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chemistry, 138(2-3), 1189-1197. doi:10.1016/j.foodchem.2012.11.114 | es_ES |
dc.description.references | Lemmens, L., Van Buggenhout, S., Oey, I., Van Loey, A., & Hendrickx, M. (2009). Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: A case study on carrots. Food Research International, 42(9), 1323-1330. doi:10.1016/j.foodres.2009.04.006 | es_ES |
dc.description.references | Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19(4), 252-276. doi:10.1016/j.jfca.2005.04.014 | es_ES |
dc.description.references | Liang, L., Wu, X., Zhao, T., Zhao, J., Li, F., Zou, Y., … Yang, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 46(1), 76-82. doi:10.1016/j.foodres.2011.11.024 | es_ES |
dc.description.references | Barba, A. I. O., Hurtado, M. C., Mata, M. C. S., Ruiz, V. F., & Tejada, M. L. S. de. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95(2), 328-336. doi:10.1016/j.foodchem.2005.02.028 | es_ES |
dc.description.references | REEVE, R. M., & BROWN, M. S. (1968). Histological Development of the Green Bean Pod as Related to Culinary Texture.. Journal of Food Science, 33(3), 321-326. doi:10.1111/j.1365-2621.1968.tb01378.x | es_ES |
dc.description.references | Rodrigues, A. S., Pérez-Gregorio, M. R., García-Falcón, M. S., & Simal-Gándara, J. (2009). Effect of curing and cooking on flavonols and anthocyanins in traditional varieties of onion bulbs. Food Research International, 42(9), 1331-1336. doi:10.1016/j.foodres.2009.04.005 | es_ES |
dc.description.references | Ryan, L., O’Connell, O., O’Sullivan, L., Aherne, S. A., & O’Brien, N. M. (2008). Micellarisation of Carotenoids from Raw and Cooked Vegetables. Plant Foods for Human Nutrition, 63(3), 127-133. doi:10.1007/s11130-008-0081-0 | es_ES |
dc.description.references | Schweiggert, R. M., Mezger, D., Schimpf, F., Steingass, C. B., & Carle, R. (2012). Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chemistry, 135(4), 2736-2742. doi:10.1016/j.foodchem.2012.07.035 | es_ES |
dc.description.references | Sila, D. N., Van Buggenhout, S., Duvetter, T., Fraeye, I., De Roeck, A., Van Loey, A., & Hendrickx, M. (2009). Pectins in Processed Fruits and Vegetables: Part II-Structure-Function Relationships. Comprehensive Reviews in Food Science and Food Safety, 8(2), 86-104. doi:10.1111/j.1541-4337.2009.00071.x | es_ES |
dc.description.references | STERLING, C., & SHIMAZU, F. (1961). Cellulose Crystallinity and the Reconstitution of Dehydrated Carrots. Journal of Food Science, 26(5), 479-484. doi:10.1111/j.1365-2621.1961.tb00393.x | es_ES |
dc.description.references | Stolle-Smits, T., Beekhuizen, J. G., van Dijk, C., Voragen, A. G. J., & Recourt, K. (1995). Cell Wall Dissolution during Industrial Processing of Green Beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 43(9), 2480-2486. doi:10.1021/jf00057a030 | es_ES |
dc.description.references | SZCZESNIAK, A. S., & KAHN, E. L. (1971). CONSUMER AWARENESS OF AND ATTITUDES TO FOOD TEXTURE. Journal of Texture Studies, 2(3), 280-295. doi:10.1111/j.1745-4603.1971.tb01005.x | es_ES |
dc.description.references | Trejo Araya, X. I., Smale, N., Zabaras, D., Winley, E., Forde, C., Stewart, C. M., & Mawson, A. J. (2009). Sensory perception and quality attributes of high pressure processed carrots in comparison to raw, sous-vide and cooked carrots. Innovative Food Science & Emerging Technologies, 10(4), 420-433. doi:10.1016/j.ifset.2009.04.002 | es_ES |
dc.description.references | Van Boekel, M. A. J. . (1999). Testing of kinetic models: usefulness of the multiresponse approach as applied to chlorophyll degradation in foods. Food Research International, 32(4), 261-269. doi:10.1016/s0963-9969(99)00080-0 | es_ES |
dc.description.references | Van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., … Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. Molecular Nutrition & Food Research, 54(9), 1215-1247. doi:10.1002/mnfr.200900608 | es_ES |
dc.description.references | Van Buggenhout, S., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2009). Pectins in Processed Fruits and Vegetables: Part III-Texture Engineering. Comprehensive Reviews in Food Science and Food Safety, 8(2), 105-117. doi:10.1111/j.1541-4337.2009.00072.x | es_ES |
dc.description.references | Van het Hof, K. H., West, C. E., Weststrate, J. A., & Hautvast, J. G. A. J. (2000). Dietary Factors That Affect the Bioavailability of Carotenoids. The Journal of Nutrition, 130(3), 503-506. doi:10.1093/jn/130.3.503 | es_ES |
dc.description.references | Verlinden, B. E., Nicolaï, B. M., & De Baerdemaeker, J. (1995). The starch gelatinization in potatoes during cooking in relation to the modelling of texture kinetics. Journal of Food Engineering, 24(2), 165-179. doi:10.1016/0260-8774(94)p2641-h | es_ES |
dc.description.references | Volden, J., Borge, G. I. A., Bengtsson, G. B., Hansen, M., Thygesen, I. E., & Wicklund, T. (2008). Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chemistry, 109(3), 595-605. doi:10.1016/j.foodchem.2008.01.010 | es_ES |
dc.description.references | Yang, M., I. Koo, S., O. Song, W., & K. Chun, O. (2011). Food Matrix Affecting Anthocyanin Bioavailability: Review. Current Medicinal Chemistry, 18(2), 291-300. doi:10.2174/092986711794088380 | es_ES |