Abkar, A., & Eslamian, M. (2012). Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces. Computers & Mathematics with Applications, 64(4), 643-650. doi:10.1016/j.camwa.2011.12.075
Bruhat, F., & Tits, J. (1972). Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l’IHÉS, 41(1), 5-251. doi:10.1007/bf02715544
Dhompongsa, S., Kaewkhao, A., & Panyanak, B. (2012). On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 459-468. doi:10.1016/j.na.2011.08.046
[+]
Abkar, A., & Eslamian, M. (2012). Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces. Computers & Mathematics with Applications, 64(4), 643-650. doi:10.1016/j.camwa.2011.12.075
Bruhat, F., & Tits, J. (1972). Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l’IHÉS, 41(1), 5-251. doi:10.1007/bf02715544
Dhompongsa, S., Kaewkhao, A., & Panyanak, B. (2012). On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 459-468. doi:10.1016/j.na.2011.08.046
Dhompongsa, S., Kirk, W. A., & Sims, B. (2006). Fixed points of uniformly lipschitzian mappings. Nonlinear Analysis: Theory, Methods & Applications, 65(4), 762-772. doi:10.1016/j.na.2005.09.044
Dhompongsa, S., & Panyanak, B. (2008). On <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence theorems in CAT(0) spaces. Computers & Mathematics with Applications, 56(10), 2572-2579. doi:10.1016/j.camwa.2008.05.036
Iemoto, S., & Takahashi, W. (2009). Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2082-e2089. doi:10.1016/j.na.2009.03.064
Khan, S. H., & Abbas, M. (2011). Strong and <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence of some iterative schemes in CAT(0) spaces. Computers & Mathematics with Applications, 61(1), 109-116. doi:10.1016/j.camwa.2010.10.037
Kirk, W. A., & Panyanak, B. (2008). A concept of convergence in geodesic spaces. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3689-3696. doi:10.1016/j.na.2007.04.011
Kohsaka, F., & Takahashi, W. (2008). Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Archiv der Mathematik, 91(2), 166-177. doi:10.1007/s00013-008-2545-8
Nanjaras, B., Panyanak, B., & Phuengrattana, W. (2010). Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Analysis: Hybrid Systems, 4(1), 25-31. doi:10.1016/j.nahs.2009.07.003
Phuengrattana, W. (2011). Approximating fixed points of Suzuki-generalized nonexpansive mappings. Nonlinear Analysis: Hybrid Systems, 5(3), 583-590. doi:10.1016/j.nahs.2010.12.006
Shimizu, T., & Takahashi, W. (1996). Fixed points of multivalued mappings in certain convex metric spaces. Topological Methods in Nonlinear Analysis, 8(1), 197. doi:10.12775/tmna.1996.028
Takahashi, W. (1970). A convexity in metric space and nonexpansive mappings. I. Kodai Mathematical Seminar Reports, 22(2), 142-149. doi:10.2996/kmj/1138846111
[-]