- -

On the generalized asymptotically nonspreading mappings in convex metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the generalized asymptotically nonspreading mappings in convex metric spaces

Mostrar el registro completo del ítem

Phuengrattana, W. (2017). On the generalized asymptotically nonspreading mappings in convex metric spaces. Applied General Topology. 18(1):117-129. https://doi.org/10.4995/agt.2017.6578

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79819

Ficheros en el ítem

Metadatos del ítem

Título: On the generalized asymptotically nonspreading mappings in convex metric spaces
Autor: Phuengrattana, Withun
Fecha difusión:
Resumen:
[EN] In this article, we propose a new class of nonlinear mappings, namely, generalized asymptotically nonspreading mapping, and prove the existence of fixed points for such mapping in convex metric spaces. Furthermore, ...[+]
Palabras clave: Asymptotically nonspreading mapping , Convex metric spaces , CAT(0) spaces , Demiclosed principle
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2017.6578
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2017.6578
Tipo: Artículo

References

Abkar, A., & Eslamian, M. (2012). Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces. Computers & Mathematics with Applications, 64(4), 643-650. doi:10.1016/j.camwa.2011.12.075

Bruhat, F., & Tits, J. (1972). Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l’IHÉS, 41(1), 5-251. doi:10.1007/bf02715544

Dhompongsa, S., Kaewkhao, A., & Panyanak, B. (2012). On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 459-468. doi:10.1016/j.na.2011.08.046 [+]
Abkar, A., & Eslamian, M. (2012). Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces. Computers & Mathematics with Applications, 64(4), 643-650. doi:10.1016/j.camwa.2011.12.075

Bruhat, F., & Tits, J. (1972). Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l’IHÉS, 41(1), 5-251. doi:10.1007/bf02715544

Dhompongsa, S., Kaewkhao, A., & Panyanak, B. (2012). On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 459-468. doi:10.1016/j.na.2011.08.046

Dhompongsa, S., Kirk, W. A., & Sims, B. (2006). Fixed points of uniformly lipschitzian mappings. Nonlinear Analysis: Theory, Methods & Applications, 65(4), 762-772. doi:10.1016/j.na.2005.09.044

Dhompongsa, S., & Panyanak, B. (2008). On <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence theorems in CAT(0) spaces. Computers & Mathematics with Applications, 56(10), 2572-2579. doi:10.1016/j.camwa.2008.05.036

Iemoto, S., & Takahashi, W. (2009). Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2082-e2089. doi:10.1016/j.na.2009.03.064

Khan, S. H., & Abbas, M. (2011). Strong and <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence of some iterative schemes in CAT(0) spaces. Computers & Mathematics with Applications, 61(1), 109-116. doi:10.1016/j.camwa.2010.10.037

Kirk, W. A., & Panyanak, B. (2008). A concept of convergence in geodesic spaces. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3689-3696. doi:10.1016/j.na.2007.04.011

Kohsaka, F., & Takahashi, W. (2008). Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Archiv der Mathematik, 91(2), 166-177. doi:10.1007/s00013-008-2545-8

Nanjaras, B., Panyanak, B., & Phuengrattana, W. (2010). Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Analysis: Hybrid Systems, 4(1), 25-31. doi:10.1016/j.nahs.2009.07.003

Phuengrattana, W. (2011). Approximating fixed points of Suzuki-generalized nonexpansive mappings. Nonlinear Analysis: Hybrid Systems, 5(3), 583-590. doi:10.1016/j.nahs.2010.12.006

Shimizu, T., & Takahashi, W. (1996). Fixed points of multivalued mappings in certain convex metric spaces. Topological Methods in Nonlinear Analysis, 8(1), 197. doi:10.12775/tmna.1996.028

Takahashi, W. (1970). A convexity in metric space and nonexpansive mappings. I. Kodai Mathematical Seminar Reports, 22(2), 142-149. doi:10.2996/kmj/1138846111

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem