- -

Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros

Show full item record

Gómez, F.; Yebra, L.; Giménez, A.; Torres-Moreno, J. (2019). Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros. Revista Iberoamericana de Automática e Informática. 16(4):459-466. https://doi.org/10.4995/riai.2019.10609

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126293

Files in this item

Item Metadata

Title: Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros
Secondary Title: Modelling of batteries for application in light electric urban vehicles
Author: Gómez, F.J. Yebra, L.J. Giménez, A. Torres-Moreno, J.L.
Issued date:
Abstract:
[EN] In this paper a dynamic model of a battery that lets simulate different types of batteries in light electric urban vehicles applications is proposed. The model is directly parameterizable from discharging experimental ...[+]


[ES] En este artículo se propone un modelo dinámico de batería que permite simular el comportamiento de distintos tipos de baterías para su aplicación en vehículos eléctricos urbanos ligeros. El modelo es fácilmente ...[+]
Subjects: Lenguajes de simulación , Modelado de sistemas de eventos discretos e híbridos , Simulación de sistemas , Gestión energética y de almacenamiento de energía en vehículos , Identificación de sistemas y estimación de parámetros , Simulation languages , Discrete-event dynamic systems , Systems simulation , Storage and management of energy , System identification and Parameter estimation
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática.. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.10609
Publisher:
1697-7912
Publisher version: https://doi.org/10.4995/riai.2019.10609
Thanks:
Al personal técnico del Grupo de Automática, Robótica y Mecatrónica de la Universidad de Almería (TEP-197) a cargo de la microrred experimental, por su inestimable ayuda en la obtención de los registros experimentales ...[+]
Type: Artículo

References

A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B.

Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep.

Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211 [+]
A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B.

Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep.

Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211

Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J., Villarreal, I., 2016. State of health estimation algorithm of LiFePO4battery packs based on differential voltage curves for battery management system application. Energy 103, 784-796. https://doi.org/10.1016/j.energy.2016.02.163

Brondani, M. D. F., Sausen, A. T. Z. R., Sausen, P. S., Binelo, M. O., 2017. Battery Model Parameters Estimation Using Simulated Annealing. TEMA(Sao Carlos) 18 (1), 127. URL: https://tema.sbmac.org.br/tema/article/view/1003 https://doi.org/10.5540/tema.2017.018.01.0127

Dempsey, M., Gäfvert, M., Harman, P., Kral, C., Otter, M., Treffinger, P., 2006. Coordinated automotive libraries for vehicle system modelling. In: 5thModel. Conf. 2006. The Modelica Association, Vienna, Austria, pp. 33-41.URL: https://www.modelica.org/events/modelica2006/Proceedings/sessions/Session1b2.pdf

Dizqah,A.M.,Busawon,K.,Fritzson,P.,2012.ACAUSALMODELINGAND SIMULATION OF THE STANDALONE SOLAR POWER SYSTEMS AS HYBRID DAEs. In: 53rd Int. Conf. Scand. Simul. Soc. pp. 1-7.

Dymola - Dynamic Modeling Laboratory - User Manual, 2018. Dymola. URL: http://www.dymola.com

Elmqvist, H., Olsson, H., Mattsson, S. E., Brück, D., Schweiger, C., Joos, D., Otter, M., 2005. Optimization for design and parameter estimation. In: In4th International Modelica Conference.

Fritzson, P., 2015. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd Edition. Wiley. https://doi.org/10.1002/9781118989166

Gómez, F.J., Yebra, L.J., Giménez, A., 2018. Modelling a Smart-Grid for a Solar Powered Electric Vehicle. In: Technische Universität Wien (Ed.), 9th Vienna Conf. Math. Model. Vol. 55. ARGESIM Publisher, Vienna, Vienna,Austria, pp. 5-6. URL: https://www.asim-gi.org/fileadmin/user_upload_argesim/ARGESIM_Publications_OA/MATHMOD_Publications_OA/MATHMOD_2018_AR55/articles/a55113.arep.55.pdf DOI: 10.11128/arep.55.a55113. https://doi.org/10.11128/arep.55.a55113

Hausmann, A., Depcik, C., 2013. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Sources 235, 148-158. URL: https://www.sciencedirect.com/science/article/pii/S0378775313002322. https://doi.org/10.1016/j.jpowsour.2013.01.174

Kroeze, R. C., Krein, P. T., 2008. Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electron. Spec. Conf. IEEE, Rhodes, Greece, pp. 1336-1342. URL: http://ieeexplore.ieee.org/document/4592119/. https://doi.org/10.1109/PESC.2008.4592119

NREL, 2015. Technoeconomic Modeling of Battery Energy Storage in SAM. Tech. Rep.September.URL: http://www.nrel.gov/docs/fy15osti/64641.pdf

Olsson, H., Mattsson, S. E., Hilding Elmqvist, 2006. Calibration of Static Models using Dymola. In: Proc. 5th Int. Model. Conf. The Modelica Association (http://www.modelica.org/) and Arsenal Research (http://www.arsenal.ac.at/), Vienna, Austria, pp. 615-620.URL: https://modelica.org/events/modelica2006/Proceedings/sessions/Session6a3.pdf

Petzl, M., Danzer, M. A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans. Energy Convers. 28 (3), 675-681. https://doi.org/10.1109/TEC.2013.2259490

Seaman, A., Dao, T.-S., McPhee, J., jun 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410-423. URL: https://www.sciencedirect.com/science/article/pii/S0378775314000810. https://doi.org/10.1016/j.jpowsour.2014.01.057

Torres-Moreno, J. L., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with pv-battery systemsand electric vehicles. Energies 11 (3). URL: http://www.mdpi.com/1996-1073/11/3/522 DOI: 10.3390/en11030522. https://doi.org/10.3390/en11030522

Tremblay, O., Dessaint, L., 2009. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1-10. https://doi.org/10.3390/wevj3020289

TÜV SÜD Certification and Testing (China) Co. Ltd., 2016. Test Report IEC-62619A BYD B-Box. Tech. rep., TÜV SÜD Certification and Testing (China) Co. Ltd., Shenzhen (China). URL: https://www1.fenecon.de/web/content/34638

van Baten, J., 2017. ScanIt. URL: https://www.amsterchem.com/scanit.html

Wang, W., Chung, H. S. H., Zhang, J., 2014. Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoCdependent capacitance. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 29 (11), 3977-3984. URL: https://ieeexplore.ieee.org/document/6714474. https://doi.org/10.1109/ECCE.2014.6953942

Zambrano Bigiarini, M., 2017. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. URL: http://hzambran.github.io/hydroGOF/

Zhang, W.-J., mar 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196 (6), 2962-2970. URL: https://www.sciencedirect.com/science/article/pii/S037877531002104X{#}bib0005. https://doi.org/10.1016/j.jpowsour.2010.11.113

[-]

This item appears in the following Collection(s)

Show full item record