A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B.
Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep.
Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211
[+]
A123 Systems, 2012. Nanophosphate High Power Lithium Ion Cell ANR26650M1-B.
Ahmed, M., 2016. Modeling Lithium-ion Battery Chargers in PLECS R . Tech.rep.
Ansean, D., Gonzalez, M., Viera, J. C., Alvarez, J. C., Blanco, C., García, V. M., 2013. Evaluation of LiFePO4batteries for Electric Vehicle applications. In: 2013 Int. Conf. New Concepts Smart Cities Foster. Public Priv. Alliances. IEEE, Gijon, Spain, p. 8. URL: https://ieeexplore.ieee.org/document/6708211 http://doi.org/10.1109/SmartMILE.2013.6708211
Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J., Villarreal, I., 2016. State of health estimation algorithm of LiFePO4battery packs based on differential voltage curves for battery management system application. Energy 103, 784-796. https://doi.org/10.1016/j.energy.2016.02.163
Brondani, M. D. F., Sausen, A. T. Z. R., Sausen, P. S., Binelo, M. O., 2017. Battery Model Parameters Estimation Using Simulated Annealing. TEMA(Sao Carlos) 18 (1), 127. URL: https://tema.sbmac.org.br/tema/article/view/1003 https://doi.org/10.5540/tema.2017.018.01.0127
Dempsey, M., Gäfvert, M., Harman, P., Kral, C., Otter, M., Treffinger, P., 2006. Coordinated automotive libraries for vehicle system modelling. In: 5thModel. Conf. 2006. The Modelica Association, Vienna, Austria, pp. 33-41.URL: https://www.modelica.org/events/modelica2006/Proceedings/sessions/Session1b2.pdf
Dizqah,A.M.,Busawon,K.,Fritzson,P.,2012.ACAUSALMODELINGAND SIMULATION OF THE STANDALONE SOLAR POWER SYSTEMS AS HYBRID DAEs. In: 53rd Int. Conf. Scand. Simul. Soc. pp. 1-7.
Dymola - Dynamic Modeling Laboratory - User Manual, 2018. Dymola. URL: http://www.dymola.com
Elmqvist, H., Olsson, H., Mattsson, S. E., Brück, D., Schweiger, C., Joos, D., Otter, M., 2005. Optimization for design and parameter estimation. In: In4th International Modelica Conference.
Fritzson, P., 2015. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd Edition. Wiley. https://doi.org/10.1002/9781118989166
Gómez, F.J., Yebra, L.J., Giménez, A., 2018. Modelling a Smart-Grid for a Solar Powered Electric Vehicle. In: Technische Universität Wien (Ed.), 9th Vienna Conf. Math. Model. Vol. 55. ARGESIM Publisher, Vienna, Vienna,Austria, pp. 5-6. URL: https://www.asim-gi.org/fileadmin/user_upload_argesim/ARGESIM_Publications_OA/MATHMOD_Publications_OA/MATHMOD_2018_AR55/articles/a55113.arep.55.pdf DOI: 10.11128/arep.55.a55113. https://doi.org/10.11128/arep.55.a55113
Hausmann, A., Depcik, C., 2013. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Sources 235, 148-158. URL: https://www.sciencedirect.com/science/article/pii/S0378775313002322. https://doi.org/10.1016/j.jpowsour.2013.01.174
Kroeze, R. C., Krein, P. T., 2008. Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electron. Spec. Conf. IEEE, Rhodes, Greece, pp. 1336-1342. URL: http://ieeexplore.ieee.org/document/4592119/. https://doi.org/10.1109/PESC.2008.4592119
NREL, 2015. Technoeconomic Modeling of Battery Energy Storage in SAM. Tech. Rep.September.URL: http://www.nrel.gov/docs/fy15osti/64641.pdf
Olsson, H., Mattsson, S. E., Hilding Elmqvist, 2006. Calibration of Static Models using Dymola. In: Proc. 5th Int. Model. Conf. The Modelica Association (http://www.modelica.org/) and Arsenal Research (http://www.arsenal.ac.at/), Vienna, Austria, pp. 615-620.URL: https://modelica.org/events/modelica2006/Proceedings/sessions/Session6a3.pdf
Petzl, M., Danzer, M. A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans. Energy Convers. 28 (3), 675-681. https://doi.org/10.1109/TEC.2013.2259490
Seaman, A., Dao, T.-S., McPhee, J., jun 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410-423. URL: https://www.sciencedirect.com/science/article/pii/S0378775314000810. https://doi.org/10.1016/j.jpowsour.2014.01.057
Torres-Moreno, J. L., Gimenez-Fernandez, A., Perez-Garcia, M., Rodriguez, F., 2018. Energy management strategy for micro-grids with pv-battery systemsand electric vehicles. Energies 11 (3). URL: http://www.mdpi.com/1996-1073/11/3/522 DOI: 10.3390/en11030522. https://doi.org/10.3390/en11030522
Tremblay, O., Dessaint, L., 2009. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1-10. https://doi.org/10.3390/wevj3020289
TÜV SÜD Certification and Testing (China) Co. Ltd., 2016. Test Report IEC-62619A BYD B-Box. Tech. rep., TÜV SÜD Certification and Testing (China) Co. Ltd., Shenzhen (China). URL: https://www1.fenecon.de/web/content/34638
van Baten, J., 2017. ScanIt. URL: https://www.amsterchem.com/scanit.html
Wang, W., Chung, H. S. H., Zhang, J., 2014. Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoCdependent capacitance. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 29 (11), 3977-3984. URL: https://ieeexplore.ieee.org/document/6714474. https://doi.org/10.1109/ECCE.2014.6953942
Zambrano Bigiarini, M., 2017. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. URL: http://hzambran.github.io/hydroGOF/
Zhang, W.-J., mar 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196 (6), 2962-2970. URL: https://www.sciencedirect.com/science/article/pii/S037877531002104X{#}bib0005. https://doi.org/10.1016/j.jpowsour.2010.11.113
[-]