- -

Control de posición y fuerza con estimación de masa para sistemas cooperativos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de posición y fuerza con estimación de masa para sistemas cooperativos

Mostrar el registro completo del ítem

Sánchez-Sánchez, P.; Arteaga-Pérez, MA. (2020). Control de posición y fuerza con estimación de masa para sistemas cooperativos. Revista Iberoamericana de Automática e Informática industrial. 17(4):368-379. https://doi.org/10.4995/riai.2020.12432

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151140

Ficheros en el ítem

Metadatos del ítem

Título: Control de posición y fuerza con estimación de masa para sistemas cooperativos
Otro titulo: Position and force control with mass estimation for cooperative systems
Autor: Sánchez-Sánchez, P. Arteaga-Pérez, M. A.
Fecha difusión:
Resumen:
[ES] La manipulación cooperativa de un objeto por dos o más brazos robóticos requiere controlar tanto el movimiento del objeto como las fuerzas ejercidas por los manipuladores. En términos de cinemática y estática, el ...[+]


[EN] The cooperative manipulation of an object by two or more robotic arms requires controlling both the object’s movement and the forces exerted by the manipulators. In terms of kinematics and static, the chosen approach ...[+]
Palabras clave: Cooperative robots , Adaptive control , Force control , Holonomic constraints , Hyperbolic tangent functions , Robots cooperativos , Control adaptable , Control de fuerza , Restricciones holonómicas , Función tangente hiperbólica
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.12432
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.12432
Código del Proyecto:
info:eu-repo/grantAgreement/BUAP//811/
info:eu-repo/grantAgreement/UNAM/PAPIIT/IN117820/MX/Control y regulación de fuerza en sistemas de teleoperación bilateral./
Agradecimientos:
Los autores agradecen a PRODEP (PROMEP) con el folio BUAP–811 y al proyecto PAPIIT IN117820.
Tipo: Artículo

References

Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Principle of Orthogonalization for Hybrid Control of Robot Arms. Proceedings of the IFAC 12th Triennial World Congress. Volume 26, Issue 2, Part 3, 335-340. Sidney, Australia. https://doi.org/10.1016/S1474-6670(17)48744-1

Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Model-Based Adaptive Hybrid Control for Geometrically Constrained Robots. Proceedings IEEE International Conference on Robotics and Automation. 618-623. Atlanta, GA, USA. https://doi.org/10.1109/ROBOT.1993.292047

Dauchez, P. and Zapata, R., 1985. Co-ordinated control of two cooperative manipulators: the use of a kinematic model. Proceedings 15th Int. Symp. Industrial Robots. 641-648. Tokyo, Japan. [+]
Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Principle of Orthogonalization for Hybrid Control of Robot Arms. Proceedings of the IFAC 12th Triennial World Congress. Volume 26, Issue 2, Part 3, 335-340. Sidney, Australia. https://doi.org/10.1016/S1474-6670(17)48744-1

Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Model-Based Adaptive Hybrid Control for Geometrically Constrained Robots. Proceedings IEEE International Conference on Robotics and Automation. 618-623. Atlanta, GA, USA. https://doi.org/10.1109/ROBOT.1993.292047

Dauchez, P. and Zapata, R., 1985. Co-ordinated control of two cooperative manipulators: the use of a kinematic model. Proceedings 15th Int. Symp. Industrial Robots. 641-648. Tokyo, Japan.

Fujii, S. and Kurono, S., 1975. Coordinated computer control of a pair of manipulators. Proceedings 4th IFToMM World Congress, University of Newcastle upon Tyne. 411-417. England.

Gudiño-Lau, J. and Arteaga-Pérez, M. A., 2003. Force Control with a Velocity Observer. Proc. European Control Conference (ECC 2003). 52-55. Cambridge, UK. https://doi.org/10.23919/ECC.2003.7086506

Gudiño-Lau, J. and Arteaga-Pérez, M. A. and Muñoz, L. A. and Parra-Vega, V., 2004. On the control of cooperative robots without velocity measurements. IEEE Transactions on Control Systems Technology, 12 (4) 600-608. https://doi.org/10.23919/ECC.2003.10.1109/TCST.2004.824965

Hayati, S., 1986. Hybrid position/force control of multi-arm cooperating robots. Proceedings of 1986 IEEE International Conference on Robotics and Automation. 82-89. San Francisco, CA, USA. https://doi.org/10.1109/ROBOT.1986.1087650

Hwang, G. and Hashimoto, H. and Szemes, P. and Ando, N., 2005. An evaluation of grasp force control in single-master multi-slave tele-micromanipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2179-2184. Alberta, Canada. https://doi.org/10.1109/IROS.2005.1545074

Kelly, R. and Santibáñez, V., 2003. Control de Movimiento de Robots Manipuladores, Pearson Prentice-Hall, Madrid, España. ISBN-10: 8420538310 / ISBN-13: 9788420538310

Khalil, H. K., 1996. Nonlinear Systems (2nd Ed), Prentice-Hall, Englewood Cliffs, New Jersey ISBN-10: 9332542031 / ISBN-13: 978-9332542037

Khatib, O., 1987. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE Journal of Robotics and Automation, Vol. 3(1), 43-53. https://doi.org/10.1109/JRA.1987.1087068

Koivo, A. J. and Bekey, G. A., 1987. Report of the Workshop on Coordinated Multiple Robot Manipulators: Planning, Control and Applications. IEEE Transactions on Robotics and Automation (IEEE Trans Robot Autom), 4(1) 91-93. ISSN: 1042-296X

McClamroch, N. H., 1986. Singular systems of differential equations as dynamic models for constrained robot systems. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA 21-28. https://doi.org/10.1109/ROBOT.1986.1087712

McClamroch, H. and Wang, D., 1990. Linear feedback control of position and contact force for a nonlinear constrained mechanism. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 112(4), 640-645. https://doi.org/10.1115/1.2896189

Murphey, T. D. and Horowitz, M., 2008. Adaptive cooperative manipulation with intermit- tent contact. Proc. IEEE International Conference on Robotics and Automation, Pasadena, California. USA 1483-1488. https://doi.org/10.1109/ROBOT.2008.4543411

Nakano, E. and Ozaki, S. and Ishida, T. and Kato, I., 1974. Cooperational control of the anthropomorphous manipulator MELARM. Proceedings 4th Int. Symp. Industrial Ro- bots, 251-260. Tokyo, Japan.

Naniwa, T. and Arimoto, S. and Parra-Vega, V., 1994. A model-based adaptive control scheme for coordinated control of multiple manipulators. Proceedings of the IEEE/RS- J/GI International Conference on Intelligent Robots and Systems, Munich, Germany 695-702. https://doi.org/10.1109/IROS.1994.407357

Pliego-Jiménez, J. and Arteaga-Pérez, M., 2017. On the adaptive control of cooperative robots with time-variant holonomic constraints. International Journal of Adaptive Control and Signal Processing, 31(8) 1217-1231. https://doi.org/10.1002/acs.2758

Rahman, S. M. M. and Ikeura, R., 2012. Weight-perception-based novel control for cooperative lifting of objects with a power assist robot by two humans. International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy 228-233. https://doi.org/10.1109/BioRob.2012.6290259

Raibert, M. and Craig, J., 1981. Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 103(2), 126-133. https://doi.org/10.1115/1.3139652

Rivera-Dueñas, J. C. and Arteaga-Pérez, M. A., 2013. Robot force control without dynamic model: Theory and experiments. Robotica, Vol. 31(1) 149-171. https://doi.org/10.1017/S026357471200015X

Rugthum, T. and Tao, G., 2014. An adaptive actuator failure compensation scheme for a cooperative manipulator system. Proc. American Control Conference, Portland, Oregon. USA 1951-1956. https://doi.org/10.1109/CDC.2015.7403208

Sánchez-Sánchez, P. and Arteaga-Pérez, M. A., 2017. Improving force tracking control performance in cooperative robots. International Journal of Advanced Robotic Systems, 14(4) 1-15. https://doi.org/10.1177/1729881417708969

Slotine, J. J. E. and Li, W., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, New Jersey. ISBN-10: 0130408905 / ISBN-13: 978-0130408907

Spong, M. W. and Hutchinson, S. and Vidyasagar, M., 2006. Robot Modeling and Control. John Wiley and Sons, USA. ISBN-10: 0471649902 / ISBN-13: 978-0471649908

Tarn, T. J. and Bejczy, A. K. and Yun, X., 1988. New nonlinear control algorithms for multiple robot arms. IEEE Transactions on Aerospace and Electronic Systems, 24(5) 571-583. https://doi.org/10.1109/7.9685

Uchiyama, M. and Iwasawa, N. and Hakomori, K., 1987. Hybrid position/force control for coordination of a two-arm robot. Proceedings of 1987 IEEE International Conference on Robotics and Automation, 1242-1247, Raleigh, NC, USA. https://doi.org/10.1109/ROBOT.1987.1087766

Uchiyama, M. and Dauchez, P., 1988. A symmetric hybrid position/force control scheme for the coordination of two robots. Proceedings of 1988 IEEE International Conference on Robotics and Automation, 350-356, Philadelphia, PA, USA. https://doi.org/10.1109/ROBOT.1988.12073

Uchiyama, M. and Dauchez, P., 1993. Symmetric kinematic formulation and non- master/slave coordinated control of two-arm robots. Journal Advanced Robotics. 7(4) 361-383. https://doi.org/10.1163/156855393X00221

Yun-Hui, L. and Parra-Vega, V. and Arimoto, S., 1996. Decentralized Cooperation Control: Joint-Space Approaches for Holonomic Cooperations. Proc. IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota 2420-2425. https://doi.org/10.1109/ROBOT.1996.506526

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem