- -

Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina

Mostrar el registro completo del ítem

López-Estrada, FR.; Méndez-López, A.; Santos-Ruiz, I.; Valencia-Palomo, G.; Escobar-Gómez, E. (2021). Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina. Revista Iberoamericana de Automática e Informática industrial. 18(3):254-264. https://doi.org/10.4995/riai.2020.14031

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168908

Ficheros en el ítem

Metadatos del ítem

Título: Detección de fallas en vehículos aéreos no tripulados mediante señales de orientación y técnicas de aprendizaje de máquina
Otro titulo: Fault detection in unmanned aerial vehicles via orientation signals and machine learning
Autor: López-Estrada, F. R. Méndez-López, A. Santos-Ruiz, I. Valencia-Palomo, G. Escobar-Gómez, E.
Fecha difusión:
Resumen:
[EN] This work proposes an actuator fault detection and isolation scheme for a quadrotor unmanned aerial vehicle (UAV) under a data-driven approach using machine learning techniques. In this approach, an implicit model of ...[+]


[ES] Este trabajo propone un esquema de detección y localización de fallas en los actuadores de un vehículo aéreo no tripulado (VANT) del tipo cuadrirrotor. Para ello, se considera un enfoque basado en datos haciendo uso ...[+]
Palabras clave: Unmanned aerial vehicle , Fault detection and isolation , Principal component analisys , Machine learning , Quadrotor , Vehículo aéreo no tripulado , Detección e identificación de fallas , Análisis en componentes principales , Aprendizaje de máquina , Cuadrirrotor
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.14031
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.14031
Tipo: Artículo

References

Alos, A., Dahrouj, Z., 2020. Detecting contextual faults in unmanned aerial vehicles using dynamic linear regression and k-nearest neighbour classifier. Gyroscopy and Navigation 11, 94-104. https://doi.org/10.1134/S2075108720010046

Baskaya, E., Bronz, M., Delahaye, D., 2017. Fault detection & diagnosis for small uavs via machine learning, in: Digital Avionics Systems Conference (DASC), 2017 IEEE/AIAA 36th, IEEE. pp. 1-6. https://doi.org/10.1109/DASC.2017.8102037

Benini, A., Ferracuti, F., Monteriu, A., Radensleben, S., 2019. Fault detection of a VTOL UAV using acceleration measurements, in: 2019 18th European Control Conference (ECC), IEEE. pp. 3990-3995. https://doi.org/10.23919/ECC.2019.8796198 [+]
Alos, A., Dahrouj, Z., 2020. Detecting contextual faults in unmanned aerial vehicles using dynamic linear regression and k-nearest neighbour classifier. Gyroscopy and Navigation 11, 94-104. https://doi.org/10.1134/S2075108720010046

Baskaya, E., Bronz, M., Delahaye, D., 2017. Fault detection & diagnosis for small uavs via machine learning, in: Digital Avionics Systems Conference (DASC), 2017 IEEE/AIAA 36th, IEEE. pp. 1-6. https://doi.org/10.1109/DASC.2017.8102037

Benini, A., Ferracuti, F., Monteriu, A., Radensleben, S., 2019. Fault detection of a VTOL UAV using acceleration measurements, in: 2019 18th European Control Conference (ECC), IEEE. pp. 3990-3995. https://doi.org/10.23919/ECC.2019.8796198

Freeman, P., Pandita, R., Srivastava, N., Balas, G.J., 2013. Model-based and data-driven fault detection performance for a small UAV. IEEE/ASME Transactions on Mechatronics 18, 1300-1309. https://doi.org/10.1109/TMECH.2013.2258678

Gertler, J., 2015. Fault detection and diagnosis. Encyclopedia of Systems and Control, 417-422. https://doi.org/10.1007/978-1-4471-5058-9_223

Ghalamchi, B., Mueller, M., 2018. Vibration-based propeller fault diagnosis for multicopters, in: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE. pp. 1041-1047. https://doi.org/10.1109/ICUAS.2018.8453400

Guo, K., Liu, L., Shi, S., Liu, D., Peng, X., 2019. UAV sensor fault detection using a classifier without negative samples: A local density regulated optimization algorithm. Sensors 19, 771. https://doi.org/10.3390/s19040771

Guzmán-Rabasa, J.A., López-Estrada, F.R., González-Contreras, B.M., Valencia-Palomo, G., Chadli, M., Pérez-Patricio, M., 2019. Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled as a linear parameter-varying system. Measurement and Control 52, 1228-1239. https://doi.org/10.1177/0020294018824764

Iannace, G., Ciaburro, G., Trematerra, A., 2019. Fault diagnosis for UAV blades using artificial neural network. Robotics 8, 59. https://doi.org/10.3390/robotics8030059

Jiang, Y., Zhiyao, Z., Haoxiang, L., Quan, Q., 2015. Fault detection and identification for quadrotor based on airframe vibration signals: a data-driven method, in: 2015 34th Chinese Control Conference (CCC), IEEE. pp. 6356- 6361. https://doi.org/10.1109/ChiCC.2015.7260639

Jolliffe, I., 2011. Principal component analysis. Springer. https://doi.org/10.1007/978-3-642-04898-2_455

Keipour, A., Mousaei, M., Scherer, S., 2019. Alfa: A dataset for UAV fault and anomaly detection. arXiv preprint arXiv:1907.06268.

Khan, B., Rossiter, J.A., Valencia-Palomo, G., 2011. Exploiting kautz functions to improve feasibility in MPC. IFAC Proceedings Volumes 44, 6777-6782. https://doi.org/10.3182/20110828-6-IT-1002.00251

Li, M., Li, G., Zhong, M., 2016. A data driven fault detection and isolation scheme for UAV flight control system, in: Control Conference (CCC), 2016 35th Chinese, IEEE. pp. 6778-6783. https://doi.org/10.1109/ChiCC.2016.7554425

López-Estrada, F.R., Rotondo, D., Valencia-Palomo, G., 2019. A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems. Processes 7, 814. https://doi.org/10.3390/pr7110814

López-Estrada, F.R., Santos-Estudillo, O., Valencia-Palomo, G., Gómez- Peñate, S., Hernandez-Gutiérrez, C., 2020. Robust qLPV tracking fault-tolerant control of a 3 dof mechanical crane. Mathematical and Computational Applications 25, 48. https://doi.org/10.3390/mca25030048

Martinez, W.L., Martinez, A.R., 2015. Computational statistics handbook with MATLAB. Chapman and Hall/CRC. https://doi.org/10.1201/b19035

Mouloua, M., Gilson, R., Kring, J., Hancock, P., 2001. Workload, situation awareness, and teaming issues for UAV/UCAV operations, in: Proceedings of the human factors and ergonomics society annual meeting, SAGE Publications Sage CA: Los Angeles, CA. pp. 162-165. https://doi.org/10.1177/154193120104500235

Mueller, M.W., D'Andrea, R., 2014. Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE. pp. 45-52. https://doi.org/10.1109/ICRA.2014.6906588

Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D., 2010. Introduction, in: Autonomous Flying Robots. Springer, pp. 1-29. https://doi.org/10.1007/978-4-431-53856-1_1

Qin, S.J., 2012. Survey on data-driven industrial process monitoring and diagnosis. Annual reviews in control 36, 220-234. https://doi.org/10.1016/j.arcontrol.2012.09.004

Russell, E.L., Chiang, L.H., Braatz, R.D., 2012. Data-driven methods for fault detection and diagnosis in chemical processes. Springer Science & Business Media.

Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., Sanahuja, G., 2015. Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor, in: IEEE International Conference on Robotics and Automation, IEEE. pp. 5266-5271. https://doi.org/10.1109/ICRA.2015.7139933

Santos-Ruiz, I., López-Estrada, F.R., Puig, V., Blesa, J., Javadiha, M., 2019. Localización de fugas en redes de distribución de agua mediante k-NN con distancia cosenoidal. Asociación de México de Control Automático.

Sharifi, F., Mirzaei, M., Gordon, B.W., Zhang, Y., 2010. Fault tolerant control of a quadrotor uav using sliding mode control, in: 2010 Conference on Control and Fault-Tolerant Systems (SysTol), IEEE. pp. 239-244. https://doi.org/10.1109/SYSTOL.2010.5675979

Strang, G., Strang, G., Strang, G., Strang, G., 2016. Introduction to linear algebra. volume 3. Wellesley-Cambridge Press Wellesley, MA.

Sun, R., Cheng, Q., Wang, G., Ochieng, W., 2017. A novel online data-driven algorithm for detecting UAV navigation sensor faults. Sensors 17, 2243. https://doi.org/10.3390/s17102243

Tamura, M., Tsujita, S., 2007. A study on the number of principal components and sensitivity of fault detection using PCA. Computers & Chemical Engineering 31, 1035-1046. https://doi.org/10.1016/j.compchemeng.2006.09.004

Valencia-Palomo, G., Villanueva-Grijalba, O., Robles-Ríos, R., 2018. Device for the pose measurement and test of control algoritms for unmanned aerial vehicles. Mexican Patent MX/a/2017/005377.

Vapnik, V., 2013. The nature of statistical learning theory. Springer Science & Business Media.

Vey, D., Lunze, J., 2016. Experimental evaluation of an active fault-tolerant control scheme for multirotor uavs, in: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), IEEE. pp. 125-132. https://doi.org/10.1109/SYSTOL.2016.7739739

Wang, B., Peng, X., Jiang, M., Liu, D., 2020. Real time fault detection for UAV based on model acceleration engine. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.3001659

Wang, B., Wang, Z., Liu, L., Liu, D., Peng, X., 2019. Data-driven anomaly detection for UAV sensor data based on deep learning prediction model, in: 2019 Prognostics and System Health Management Conference (PHMParis), IEEE. pp. 286-290. https://doi.org/10.1109/PHM-Paris.2019.00055

Wold, S., 1978. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20, 397-405. https://doi.org/10.1080/00401706.1978.10489693

Xian, B., Hao, W., 2019. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo's stuck fault: Theory and experiments. IEEE Transactions on Industrial Informatics 15, 2158-2166. https://doi.org/10.1109/TII.2018.2858143

Xiao, K., Zhao, J., He, Y., Li, C., Cheng, W., 2019. Abnormal behavior detection scheme of UAV using recurrent neural networks. IEEE Access 7, 110293-110305. https://doi.org/10.1109/ACCESS.2019.2934188

Yang, H., Meng, C., Wang, C., 2020. A hybrid data-driven fault detection strategy with application to navigation sensors. Measurement and Control , 0020294020920891.

Yap, Y.K., 2014. Structural health monitoring for unmanned aerial systems. EECS., UNC, BerNley, Rep. UCB/EECS-2014-70.

Yousefi, P., Fekriazgomi, H., Demir, M.A., Prevost, J.J., Jamshidi, M., 2018. Data-driven fault detection of un-manned aerial vehicles using supervised learning over cloud networks, in: 2018 World Automation Congress (WAC), IEEE. pp. 1-6. https://doi.org/10.23919/WAC.2018.8430428

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem