- -

Control mixto para el seguimiento de trayectoria en buques marinos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control mixto para el seguimiento de trayectoria en buques marinos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vacca Sisterna, Carlos es_ES
dc.contributor.author Serrano, Emanuel es_ES
dc.contributor.author Scaglia, Gustavo es_ES
dc.contributor.author Rossomando, Francisco es_ES
dc.date.accessioned 2021-12-21T09:18:08Z
dc.date.available 2021-12-21T09:18:08Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178684
dc.description.abstract [EN] This work proposes the design of an adaptive controller for a marine vessel; the proposed control strategy applies a controller designed on linear algebra for the kinematics and an adaptive control technique for the dynamic part of the vessel. The linear algebra based controller (LABC) for kinematics receives the desired position references and this generates another reference velocity pair for the adaptive (dynamic) controller. The main goal of the application of the adaptive control technique in this kind of enforcement is presented in the case that the mass of the vessel varies with its trajectory (e.g. fishing vessel, refueling vessel, etc.) where the adaptive controller adjusts its parameters through of adaptation law, which in turn generates a control action that compensates dynamic variations of the ship. Besides, this work presents the stability analysis and adaptive adjustment law based on the Lyapunov theory. And the simulation results that are presented prove that the control can deal with non-linearities and time-variant dynamics. es_ES
dc.description.abstract [ES] Este trabajo muestra el diseño de un controlador adaptable para un buque marino; la estrategia de control que se propone es la aplicación de un controlador basado en álgebra lineal para la cinemática y una técnica de control adaptable para la parte dinámica del buque. El controlador basado en álgebra lineal (LABC) para cinemática recibe las referencias de posición deseadas y esto genera otro par de velocidad de referencia para el controlador adaptable (dinámico). El objetivo principal de la aplicación de la técnica de control adaptable se presenta en el caso de que la masa del buque varíe con su trayectoria (por ejemplo, buque pesquero, buque de reabastecimiento de combustible, etc.) donde el controlador adaptable ajusta sus parámetros mediante la ley de adaptación, que a su vez genera una acción de control que compensa las variaciones dinámicas del buque. Además, este trabajo presenta el análisis de estabilidad y la ley de ajuste adaptable basada en la teoría de Lyapunov. Los resultados de simulación muestran que el sistema puede seguir las señales de referencia con un error muy bajo aún en presencia de incertidumbre. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Adaptive control es_ES
dc.subject Linear algebra es_ES
dc.subject Trajectory tracking es_ES
dc.subject Marine vessel es_ES
dc.subject Nonlinear control es_ES
dc.subject Control adaptable es_ES
dc.subject Algebra lineal es_ES
dc.subject Seguimiento de trayectoria es_ES
dc.subject Buques marinos es_ES
dc.subject Control no lineal es_ES
dc.title Control mixto para el seguimiento de trayectoria en buques marinos es_ES
dc.title.alternative Mixed control for trajectory tracking in marine vessels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.15027
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vacca Sisterna, C.; Serrano, E.; Scaglia, G.; Rossomando, F. (2021). Control mixto para el seguimiento de trayectoria en buques marinos. Revista Iberoamericana de Automática e Informática industrial. 19(1):27-36. https://doi.org/10.4995/riai.2021.15027 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.15027 es_ES
dc.description.upvformatpinicio 27 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\15027 es_ES
dc.description.references Cui R, Chen L, Yang C, Chen M. "Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities". IEEE Transactions on Industrial Electronics 2017; 64(8): 6785-6795. https://doi.org/10.1109/TIE.2017.2694410 es_ES
dc.description.references Dai SL, He S, Lin H. "Transverse function control with prescribed performance guarantees for underactuated marine surface vehicles". International Journal of Robust and Nonlinear Control 2019; 29(5): 1577-1596. https://doi.org/10.1002/rnc.4453 es_ES
dc.description.references Do K, Jiang ZP, Pan J. "Universal controllers for stabilization and tracking of underactuated ships". Systems & Control Letters 2002; 47(4): 299-317. https://doi.org/10.1016/S0167-6911(02)00214-1 es_ES
dc.description.references Fossen T. "Marine control systems. Marine cybernetics". Trondhiem, Norway 2002. es_ES
dc.description.references Fu M,Wang T,Wang C. "Adaptive Neural-Based Finite-Time Trajectory Tracking Control for Underactuated Marine Surface Vessels With Position Error Constraint".IEEE Access 2019; 7: 16309-16322. https://doi.org/10.1109/ACCESS.2019.2895053 es_ES
dc.description.references Ghommam J, Mnif F, Derbel N. "Global stabilization and tracking control of underactuated surface vessels". IET control theory & applications 2010; 4(1): 71-88. https://doi.org/10.1049/iet-cta.2008.0131 es_ES
dc.description.references Ghommam J, Mnif F, Benali A, Derbel N. "Asymptotic backstepping stabilization of an underactuated surface vessel". IEEE Transactions on Control Systems Technology 2006; 14(6): 1150-1157. https://doi.org/10.1109/TCST.2006.880220 es_ES
dc.description.references He W, Yin Z, Sun C. "Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function".IEEE transactions on cybernetics 2016; 47(7): 1641-1651. https://doi.org/10.1109/TCYB.2016.2554621 es_ES
dc.description.references Hu X, Du J, Zhu G, Sun Y. "Robust adaptive NN control of dynamically positioned vessels under input constraints". Neurocomputing 2018; 318: 201-212. https://doi.org/10.1016/j.neucom.2018.08.056 es_ES
dc.description.references Liao Yl, Wan L, Zhuang Jy. "Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel". Procedia Engineering 2011; 15: 256-263. https://doi.org/10.1016/j.proeng.2011.08.051 es_ES
dc.description.references Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M., & BastosFilho, T. F. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 16(11), 1354-1363. https://doi.org/10.1016/j.conengprac.2008.03.004 es_ES
dc.description.references Nie J, Lin X. "Robust Nonlinear Path Following Control of UnderactuatedMSV With Time-Varying Sideslip Compensation in the Presence of Actuator Saturation and Error Constraint". IEEE Access 2018; 6: 71906-71917. https://doi.org/10.1109/ACCESS.2018.2881513 es_ES
dc.description.references Scaglia, Gustavo; Serrano, Emanuel; Albertos, Pedro (2020). Control de Trayectorias Basado en Algebra Lineal. Revista Iberoamericana de Automática e Informática industrial, [S.l.], ago. 2020. ISSN 1697-7920. Disponible en: https://polipapers.upv.es/index.php/RIAI/article/view/13584. https://doi.org/10.4995/riai.2020.13584 es_ES
dc.description.references Scaglia Gustavo, Serrano Mario Emanuel, Albertos Pedro (2020). "Linear Algebra Based Controller - Design and Applications". Publisher: Springer International Publishing. eBook ISBN 978-3-030-42818-1. Hardcover ISBN 978-3-030-42817-4. DOI 10.1007/978-3-030-42818-1. es_ES
dc.description.references Scaglia, G., Mut, V., Rosales, A., Quintero, O., "Tracking Control of a Mobile Robot using Linear Interpolation", Proceeding of the 3rd International Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA 2007. vol. 1, pp. 11-15, ISBN: 978-2-9520712-7-7 February 8-10, 2007 es_ES
dc.description.references Serrano M.E., Scaglia G.J.E., Auat Cheein F., Mut V. and Ortiz O.A. (2015).Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica, 33, pp 2186-2203, diciembre 2015. https://doi.org/10.1017/S0263574714001325 es_ES
dc.description.references Serrano ME, Godoy SA, Gandolfo D, Mut V, Scaglia G. "Nonlinear Trajectory Tracking Control for Marine Vessels with Additive Uncertainties". Information Technology And Control 2018; 47(1): 118-130. https://doi.org/10.5755/j01.itc.47.1.17782 es_ES
dc.description.references Tee KP, Ge SS. "Control of fully actuated ocean surface vessels using a class of feedforward approximators". IEEE Transactions on Control Systems Technology 2006; 14(4): 750-756. https://doi.org/10.1109/TCST.2006.872507 es_ES
dc.description.references Van M. "Adaptive neural integral sliding-mode control for tracking control of fully actuated uncertain surface vessels". International Journal of Robust and Nonlinear Control 2019; 29(5): 1537-1557. https://doi.org/10.1002/rnc.4455 es_ES
dc.description.references Wang N, Su S F,Yin J, Zheng Z, Er MJ. "Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach". Transactions on Fuzzy Systems 2017; 26(3):1613-1625. https://doi.org/10.1109/TFUZZ.2017.2737405 es_ES
dc.description.references Wang, D., Mu, C., & Liu, D. (2017, May). Neural network adaptive critic control with disturbance rejection. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 202-207). IEEE. https://doi.org/10.1109/CCDC.2017.7978092 es_ES
dc.description.references Wondergem M, Lefeber E, Pettersen KY, Nijmeijer H. "Output feedback tracking of ships". IEEE Transactions on Control Systems Technology 2010; 19(2): 442-448. https://doi.org/10.1109/TCST.2010.2045654 es_ES
dc.description.references Xu Z, Ge SS, Hu C, Hu J. "Adaptive Learning Based Tracking Control of Marine Vessels with Prescribed Performance". Mathematical Problems in Engineering 2018; 2018. https://doi.org/10.1155/2018/2595721 es_ES
dc.description.references Yang Y, Zhou C, Ren J. "Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems". Applied Soft Computing 2003; 3(4): 305-316. https://doi.org/10.1016/j.asoc.2003.05.001 es_ES
dc.description.references Yin Z, He W, Yang C. "Tracking control of a marine surface vessel with fullstate constraints". International Journal of Systems Science 2017; 48(3): 535-546. https://doi.org/10.1080/00207721.2016.1193255 es_ES
dc.description.references Yu Y, Guo C, Yu H. "Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation". International Journal of Advanced Robotic Systems 2018; 15(6): 1729881418814699. https://doi.org/10.1177/1729881418814699 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem