- -

Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos

Mostrar el registro completo del ítem

Sandoval, J.; Kelly, R.; Santibáñez, V. (2022). Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos. Revista Iberoamericana de Automática e Informática industrial. 19(4):407-418. https://doi.org/10.4995/riai.2022.16862

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187035

Ficheros en el ítem

Metadatos del ítem

Título: Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos
Otro titulo: On the energy shaping plus damping injection control of mechanical systems
Autor: Sandoval, Jesús Kelly, Rafael Santibáñez, Víctor
Fecha difusión:
Resumen:
[EN] This paper presents a tutorial about a controllers design method based on the energy shaping plus damping injection for the control of mechanical systems. A unified theoretical framework is provided to solve different ...[+]


[ES] En este trabajo se presenta un tutorial sobre un método de diseño de controladores basado en el moldeo de energía más inyección de  amortiguamiento para el control de una clase de sistemas mecánicos completamente ...[+]
Palabras clave: Energy control , Lyapunov stability , Robot control , Mechanical systems , Control de energía , Control de robots , Sistemas mecánicos , Estabilidad de Lyapunov
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16862
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16862
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//166636
info:eu-repo/grantAgreement/CONACyT//166654
info:eu-repo/grantAgreement/CONACyT//134534
Agradecimientos:
Este trabajo ha sido parcialmente financiado por los proyectos TecNM, CONACyT 166636, CONACyT 166654 y, CONACYT 134534.
Tipo: Artículo

References

Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I

Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562

Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678 [+]
Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I

Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562

Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678

Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H., 2009. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. Springer-Verlag, Germany. https://doi.org/10.1007/978-3-642-03196-0

Ebrahimi, R., Ahmad, A., Mahboobi, R., 2021. Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mechanical Systems and Signal Processing 150, 1-13. https://doi.org/10.1016/j.ymssp.2020.107239

Franco, E., Garriga-Casanovas, A., 2021. Energy-shaping control of soft continuum manipulators with in-plane disturbances. The International Journal of Robotics Research 40, 236-255. https://doi.org/10.1177/0278364920907679

Fujimoto, K., Sakurama, K., Sugie, T., 2003. Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39, 2059-2069. https://doi.org/10.1016/j.automatica.2003.07.005

Fujimoto, K., Sugie, T., 2004. Trajectory tracking control of nonholonomic hamiltonian systems via generalized canonical transformations. European Journal of Control 10, 421-431. https://doi.org/10.3166/ejc.10.421-431

Kelly, J., Sandoval, J., Santibañez, V., 2021. A guas joint position tracking controller of torque-driven robot manipulators infuenced by dynamic dahl friction: theory and experiments. IEEE Transactions on Control Systems Technology 29, 1877-1890. https://doi.org/10.1109/TCST.2020.3024134

Kelly, R., 1993. A simple set-point robot controller by using only position measurements. IFAC Proceedings Volumes 26, 527-530. https://doi.org/10.1016/S1474-6670(17)48783-0

Kelly, R., 1999. Regulation of manipulators in generic task space: an energy shaping plus damping injection approach. IEEE Transactions on Robotic and Automation 15, 381-386. https://doi.org/10.1109/70.760361

Kelly, R., 2015. Total energy function with damping assignment (tefda): A novel control objective in robotics. In: Proccedings XVI Workshop on Information Processing and Control (RPIC) , 1-6. https://doi.org/10.1109/RPIC.2015.7497057

Kelly, R., Santibañez, V., 1998. Global regulation of elastic joint robots based on energy shaping. IEEE Transactions on Automatic Control 43, 1451-1456. https://doi.org/10.1109/9.720506

Kelly, R., Santibañez, V., Loría, A., 2005. Control of Robot Manipulators in Joint Space. Springer-Verlag, London.

Khalil, H.K., 2005. Nonlinear Systems. Prentice-Hall, USA.

Liu, Y., Xin, X., 2017. Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dynamics 88, 1749-1768. https://doi.org/10.1007/s11071-017-3343-2

Lozano, R., Fantoni, I., Block, D., 2000. Stabilization of the inverted pendulum around its homoclinic orbit. Systems and Control Letters 40, 197-204. https://doi.org/10.1016/S0167-6911(00)00025-6

Moreno, J., Kelly, R., Campa, R., 2003. Manipulator velocity control using friction compensation. IEE Proceedings Control Theory Applications 150, 119-126. https://doi.org/10.1049/ip-cta:20030083

Navarro-Alarcon, D., Liu, Y., Romero, J.G., 2013. Energy shaping methods for asymptotic force regulation of compliant mechanical systems. IEEE Transactions on Control Systems Technology 22, 2376-2383. https://doi.org/10.1109/TCST.2014.2309659

Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H., 1998. Passivity-based control of Euler-Lagrange systems: Mechanical and electromechanical applications. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-3603-3

Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B., 2001. Putting energy back in control. IEEE Control Systems Magazine 21, 18-33. https://doi.org/10.1109/37.915398

Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G., 2002. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control 47, 1213-1233. https://doi.org/10.1109/TAC.2002.800770

Romero, J.G., Donaire, A., Ortega, R., 2013. Robust energy shaping control of mechanical systems. Systems and Control Letters 62, 770-780. https://doi.org/10.1016/j.sysconle.2013.05.011

Romero, J.G., Ortega, R., Sarras, I., 2015. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control 60, 818-823. https://doi.org/10.1109/TAC.2014.2330701

Sandoval, J., Kelly, R., Santibañez, V., 2020. A speed regulator for a torque-driven inertia wheel pendulum. IFAC Proceedings Volumes 53, 6371-6376. doi: 110.1016/j.ifacol.2020.12.1749

Sandoval, J., Kelly, R., Santibañez, V., 2021a. Energy regulation of torque-driven robot manipulators in joint space. Journal of the Franklin Institute 359, 1427-1456. https://doi.org/10.1016/j.jfranklin.2022.01.034

Sandoval, J., Kelly, R., Santibañez, V., 2021b. An output feedback position/speed regulator for a torque-driven inertia wheel pendulum. International Journal of Systems Science 19, 3451-3463. https://doi.org/10.1007/s12555-020-0744-7

Sandoval, J., Kelly, R., Santibañez, V., 2021c. A speed regulator for a force-driven cart-pole system. International Journal of Control, Automation and Systems 19, 3451-3463. https://doi.org/10.1080/00207721.2021.1958950

Sandoval, J., Moyron, J., Kelly, R., Santib ' a'nez, V., Moreno-Valenzuela, J., 2021d. Energy regulation for a torque-driven vertical inertia wheel pendulum. Control Engineering Practice 115, 1-13. https://doi.org/10.1016/j.conengprac.2021.104909

Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.1994.407375

Takegaki, M., Arimoto, S., 1981. A new feedback method for dynamic control of manipulators. Transactions ASME, Journal of Dynamic Systems, Measurement and Control 103, 119-125. https://doi.org/10.1115/1.3139651

Tanaka, N., Fujita, M., 2015. Energy shaping control method for robotic force/position regulation and motion control. IFAC Proceedings Volumes 32, 1136-1141. https://doi.org/10.1016/S1474-6670(17)56192-3

Viola, G., Ortega, R., Banavar, J., Acosta, J.A., Astolfi, A., 2007. Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Transactions on Automatic Control 52, 1093-1099. https://doi.org/10.1109/TAC.2007.899064

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem