Mostrar el registro sencillo del ítem
dc.contributor.author | Sandoval, Jesús | es_ES |
dc.contributor.author | Kelly, Rafael | es_ES |
dc.contributor.author | Santibáñez, Víctor | es_ES |
dc.date.accessioned | 2022-10-05T09:24:32Z | |
dc.date.available | 2022-10-05T09:24:32Z | |
dc.date.issued | 2022-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/187035 | |
dc.description.abstract | [EN] This paper presents a tutorial about a controllers design method based on the energy shaping plus damping injection for the control of mechanical systems. A unified theoretical framework is provided to solve different control objectives such as: position regulation and speed regulation for both class of mechanical systems and, trajectory tracking for the case of fully actuated mechanicalsystems. Also, the energy regulation is formulated as a new control objective to generate controlled oscillations in both fully actuated mechanical systems and underactuated mechanical systems. In addition, some design criteria are addressed: dynamic friction compensation, exclusion of speed measurement and, inclusion of actuator dynamics. Finally, as examples of application, recent results published in the literature on the design of controllers for torque-driven robot manipulators, an inertia wheel pendulum, anda cart-pendulum system, are presented. | es_ES |
dc.description.abstract | [ES] En este trabajo se presenta un tutorial sobre un método de diseño de controladores basado en el moldeo de energía más inyección de amortiguamiento para el control de una clase de sistemas mecánicos completamente actuados y subactuados. Se proporciona un marco teórico unificado que permite resolver diferentes objetivos de control como son: regulación de posición y regulación de velocidad para ambas clases de sistemas y, seguimiento de trayectorias para el caso de sistemas mecánicos completamente actuados. Además, la regulación de energía es formulada como un nuevo objetivo de control para generar oscilaciones controladas en ambas clases de sistemas mecánicos. En adición, se abordan algunos criterios de diseño como compensación de fricción dinámica, exclusión de medición de velocidad e inclusión de la dinámica de actuadores. Finalmente, como ejemplos de aplicación, se presentan recientes resultados publicados en la literatura sobre el diseño de controladores para robots manipuladores accionados por par, un péndulo con rueda inercial y un sistema carro-péndulo. | es_ES |
dc.description.sponsorship | Este trabajo ha sido parcialmente financiado por los proyectos TecNM, CONACyT 166636, CONACyT 166654 y, CONACYT 134534. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Energy control | es_ES |
dc.subject | Lyapunov stability | es_ES |
dc.subject | Robot control | es_ES |
dc.subject | Mechanical systems | es_ES |
dc.subject | Control de energía | es_ES |
dc.subject | Control de robots | es_ES |
dc.subject | Sistemas mecánicos | es_ES |
dc.subject | Estabilidad de Lyapunov | es_ES |
dc.title | Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos | es_ES |
dc.title.alternative | On the energy shaping plus damping injection control of mechanical systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.16862 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//166636 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//166654 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//134534 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sandoval, J.; Kelly, R.; Santibáñez, V. (2022). Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos. Revista Iberoamericana de Automática e Informática industrial. 19(4):407-418. https://doi.org/10.4995/riai.2022.16862 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.16862 | es_ES |
dc.description.upvformatpinicio | 407 | es_ES |
dc.description.upvformatpfin | 418 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\16862 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I | es_ES |
dc.description.references | Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562 | es_ES |
dc.description.references | Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678 | es_ES |
dc.description.references | Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H., 2009. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. Springer-Verlag, Germany. https://doi.org/10.1007/978-3-642-03196-0 | es_ES |
dc.description.references | Ebrahimi, R., Ahmad, A., Mahboobi, R., 2021. Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mechanical Systems and Signal Processing 150, 1-13. https://doi.org/10.1016/j.ymssp.2020.107239 | es_ES |
dc.description.references | Franco, E., Garriga-Casanovas, A., 2021. Energy-shaping control of soft continuum manipulators with in-plane disturbances. The International Journal of Robotics Research 40, 236-255. https://doi.org/10.1177/0278364920907679 | es_ES |
dc.description.references | Fujimoto, K., Sakurama, K., Sugie, T., 2003. Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39, 2059-2069. https://doi.org/10.1016/j.automatica.2003.07.005 | es_ES |
dc.description.references | Fujimoto, K., Sugie, T., 2004. Trajectory tracking control of nonholonomic hamiltonian systems via generalized canonical transformations. European Journal of Control 10, 421-431. https://doi.org/10.3166/ejc.10.421-431 | es_ES |
dc.description.references | Kelly, J., Sandoval, J., Santibañez, V., 2021. A guas joint position tracking controller of torque-driven robot manipulators infuenced by dynamic dahl friction: theory and experiments. IEEE Transactions on Control Systems Technology 29, 1877-1890. https://doi.org/10.1109/TCST.2020.3024134 | es_ES |
dc.description.references | Kelly, R., 1993. A simple set-point robot controller by using only position measurements. IFAC Proceedings Volumes 26, 527-530. https://doi.org/10.1016/S1474-6670(17)48783-0 | es_ES |
dc.description.references | Kelly, R., 1999. Regulation of manipulators in generic task space: an energy shaping plus damping injection approach. IEEE Transactions on Robotic and Automation 15, 381-386. https://doi.org/10.1109/70.760361 | es_ES |
dc.description.references | Kelly, R., 2015. Total energy function with damping assignment (tefda): A novel control objective in robotics. In: Proccedings XVI Workshop on Information Processing and Control (RPIC) , 1-6. https://doi.org/10.1109/RPIC.2015.7497057 | es_ES |
dc.description.references | Kelly, R., Santibañez, V., 1998. Global regulation of elastic joint robots based on energy shaping. IEEE Transactions on Automatic Control 43, 1451-1456. https://doi.org/10.1109/9.720506 | es_ES |
dc.description.references | Kelly, R., Santibañez, V., Loría, A., 2005. Control of Robot Manipulators in Joint Space. Springer-Verlag, London. | es_ES |
dc.description.references | Khalil, H.K., 2005. Nonlinear Systems. Prentice-Hall, USA. | es_ES |
dc.description.references | Liu, Y., Xin, X., 2017. Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dynamics 88, 1749-1768. https://doi.org/10.1007/s11071-017-3343-2 | es_ES |
dc.description.references | Lozano, R., Fantoni, I., Block, D., 2000. Stabilization of the inverted pendulum around its homoclinic orbit. Systems and Control Letters 40, 197-204. https://doi.org/10.1016/S0167-6911(00)00025-6 | es_ES |
dc.description.references | Moreno, J., Kelly, R., Campa, R., 2003. Manipulator velocity control using friction compensation. IEE Proceedings Control Theory Applications 150, 119-126. https://doi.org/10.1049/ip-cta:20030083 | es_ES |
dc.description.references | Navarro-Alarcon, D., Liu, Y., Romero, J.G., 2013. Energy shaping methods for asymptotic force regulation of compliant mechanical systems. IEEE Transactions on Control Systems Technology 22, 2376-2383. https://doi.org/10.1109/TCST.2014.2309659 | es_ES |
dc.description.references | Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H., 1998. Passivity-based control of Euler-Lagrange systems: Mechanical and electromechanical applications. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-3603-3 | es_ES |
dc.description.references | Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B., 2001. Putting energy back in control. IEEE Control Systems Magazine 21, 18-33. https://doi.org/10.1109/37.915398 | es_ES |
dc.description.references | Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G., 2002. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control 47, 1213-1233. https://doi.org/10.1109/TAC.2002.800770 | es_ES |
dc.description.references | Romero, J.G., Donaire, A., Ortega, R., 2013. Robust energy shaping control of mechanical systems. Systems and Control Letters 62, 770-780. https://doi.org/10.1016/j.sysconle.2013.05.011 | es_ES |
dc.description.references | Romero, J.G., Ortega, R., Sarras, I., 2015. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control 60, 818-823. https://doi.org/10.1109/TAC.2014.2330701 | es_ES |
dc.description.references | Sandoval, J., Kelly, R., Santibañez, V., 2020. A speed regulator for a torque-driven inertia wheel pendulum. IFAC Proceedings Volumes 53, 6371-6376. doi: 110.1016/j.ifacol.2020.12.1749 | es_ES |
dc.description.references | Sandoval, J., Kelly, R., Santibañez, V., 2021a. Energy regulation of torque-driven robot manipulators in joint space. Journal of the Franklin Institute 359, 1427-1456. https://doi.org/10.1016/j.jfranklin.2022.01.034 | es_ES |
dc.description.references | Sandoval, J., Kelly, R., Santibañez, V., 2021b. An output feedback position/speed regulator for a torque-driven inertia wheel pendulum. International Journal of Systems Science 19, 3451-3463. https://doi.org/10.1007/s12555-020-0744-7 | es_ES |
dc.description.references | Sandoval, J., Kelly, R., Santibañez, V., 2021c. A speed regulator for a force-driven cart-pole system. International Journal of Control, Automation and Systems 19, 3451-3463. https://doi.org/10.1080/00207721.2021.1958950 | es_ES |
dc.description.references | Sandoval, J., Moyron, J., Kelly, R., Santib ' a'nez, V., Moreno-Valenzuela, J., 2021d. Energy regulation for a torque-driven vertical inertia wheel pendulum. Control Engineering Practice 115, 1-13. https://doi.org/10.1016/j.conengprac.2021.104909 | es_ES |
dc.description.references | Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.1994.407375 | es_ES |
dc.description.references | Takegaki, M., Arimoto, S., 1981. A new feedback method for dynamic control of manipulators. Transactions ASME, Journal of Dynamic Systems, Measurement and Control 103, 119-125. https://doi.org/10.1115/1.3139651 | es_ES |
dc.description.references | Tanaka, N., Fujita, M., 2015. Energy shaping control method for robotic force/position regulation and motion control. IFAC Proceedings Volumes 32, 1136-1141. https://doi.org/10.1016/S1474-6670(17)56192-3 | es_ES |
dc.description.references | Viola, G., Ortega, R., Banavar, J., Acosta, J.A., Astolfi, A., 2007. Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Transactions on Automatic Control 52, 1093-1099. https://doi.org/10.1109/TAC.2007.899064 | es_ES |