- -

Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sandoval, Jesús es_ES
dc.contributor.author Kelly, Rafael es_ES
dc.contributor.author Santibáñez, Víctor es_ES
dc.date.accessioned 2022-10-05T09:24:32Z
dc.date.available 2022-10-05T09:24:32Z
dc.date.issued 2022-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187035
dc.description.abstract [EN] This paper presents a tutorial about a controllers design method based on the energy shaping plus damping injection for the control of mechanical systems. A unified theoretical framework is provided to solve different control objectives such as: position regulation and speed regulation for both class of mechanical systems and, trajectory tracking for the case of fully actuated mechanicalsystems. Also, the energy regulation is formulated as a new control objective to generate controlled oscillations in both fully actuated mechanical systems and underactuated mechanical systems. In addition, some design criteria are addressed: dynamic friction compensation, exclusion of speed measurement and, inclusion of actuator dynamics. Finally, as examples of application, recent results published in the literature on the design of controllers for torque-driven robot manipulators, an inertia wheel pendulum, anda cart-pendulum system, are presented. es_ES
dc.description.abstract [ES] En este trabajo se presenta un tutorial sobre un método de diseño de controladores basado en el moldeo de energía más inyección de  amortiguamiento para el control de una clase de sistemas mecánicos completamente actuados y subactuados. Se proporciona un marco teórico  unificado que permite resolver diferentes objetivos de control como son:  regulación de posición y regulación de velocidad para ambas clases de sistemas y, seguimiento de trayectorias para el caso de sistemas mecánicos  completamente actuados. Además, la regulación de energía es formulada  como un nuevo objetivo de control para generar oscilaciones controladas en  ambas clases de sistemas mecánicos. En adición, se abordan algunos  criterios de diseño como compensación de fricción dinámica, exclusión de  medición de velocidad e inclusión de la dinámica de actuadores.  Finalmente, como ejemplos de aplicación, se presentan recientes resultados  publicados en la literatura sobre el diseño de controladores para robots manipuladores accionados por par, un péndulo con rueda inercial y un sistema carro-péndulo. es_ES
dc.description.sponsorship Este trabajo ha sido parcialmente financiado por los proyectos TecNM, CONACyT 166636, CONACyT 166654 y, CONACYT 134534. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Energy control es_ES
dc.subject Lyapunov stability es_ES
dc.subject Robot control es_ES
dc.subject Mechanical systems es_ES
dc.subject Control de energía es_ES
dc.subject Control de robots es_ES
dc.subject Sistemas mecánicos es_ES
dc.subject Estabilidad de Lyapunov es_ES
dc.title Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos es_ES
dc.title.alternative On the energy shaping plus damping injection control of mechanical systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16862
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//166636 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//166654 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//134534 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sandoval, J.; Kelly, R.; Santibáñez, V. (2022). Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos. Revista Iberoamericana de Automática e Informática industrial. 19(4):407-418. https://doi.org/10.4995/riai.2022.16862 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16862 es_ES
dc.description.upvformatpinicio 407 es_ES
dc.description.upvformatpfin 418 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16862 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I es_ES
dc.description.references Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562 es_ES
dc.description.references Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678 es_ES
dc.description.references Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H., 2009. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. Springer-Verlag, Germany. https://doi.org/10.1007/978-3-642-03196-0 es_ES
dc.description.references Ebrahimi, R., Ahmad, A., Mahboobi, R., 2021. Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mechanical Systems and Signal Processing 150, 1-13. https://doi.org/10.1016/j.ymssp.2020.107239 es_ES
dc.description.references Franco, E., Garriga-Casanovas, A., 2021. Energy-shaping control of soft continuum manipulators with in-plane disturbances. The International Journal of Robotics Research 40, 236-255. https://doi.org/10.1177/0278364920907679 es_ES
dc.description.references Fujimoto, K., Sakurama, K., Sugie, T., 2003. Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39, 2059-2069. https://doi.org/10.1016/j.automatica.2003.07.005 es_ES
dc.description.references Fujimoto, K., Sugie, T., 2004. Trajectory tracking control of nonholonomic hamiltonian systems via generalized canonical transformations. European Journal of Control 10, 421-431. https://doi.org/10.3166/ejc.10.421-431 es_ES
dc.description.references Kelly, J., Sandoval, J., Santibañez, V., 2021. A guas joint position tracking controller of torque-driven robot manipulators infuenced by dynamic dahl friction: theory and experiments. IEEE Transactions on Control Systems Technology 29, 1877-1890. https://doi.org/10.1109/TCST.2020.3024134 es_ES
dc.description.references Kelly, R., 1993. A simple set-point robot controller by using only position measurements. IFAC Proceedings Volumes 26, 527-530. https://doi.org/10.1016/S1474-6670(17)48783-0 es_ES
dc.description.references Kelly, R., 1999. Regulation of manipulators in generic task space: an energy shaping plus damping injection approach. IEEE Transactions on Robotic and Automation 15, 381-386. https://doi.org/10.1109/70.760361 es_ES
dc.description.references Kelly, R., 2015. Total energy function with damping assignment (tefda): A novel control objective in robotics. In: Proccedings XVI Workshop on Information Processing and Control (RPIC) , 1-6. https://doi.org/10.1109/RPIC.2015.7497057 es_ES
dc.description.references Kelly, R., Santibañez, V., 1998. Global regulation of elastic joint robots based on energy shaping. IEEE Transactions on Automatic Control 43, 1451-1456. https://doi.org/10.1109/9.720506 es_ES
dc.description.references Kelly, R., Santibañez, V., Loría, A., 2005. Control of Robot Manipulators in Joint Space. Springer-Verlag, London. es_ES
dc.description.references Khalil, H.K., 2005. Nonlinear Systems. Prentice-Hall, USA. es_ES
dc.description.references Liu, Y., Xin, X., 2017. Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dynamics 88, 1749-1768. https://doi.org/10.1007/s11071-017-3343-2 es_ES
dc.description.references Lozano, R., Fantoni, I., Block, D., 2000. Stabilization of the inverted pendulum around its homoclinic orbit. Systems and Control Letters 40, 197-204. https://doi.org/10.1016/S0167-6911(00)00025-6 es_ES
dc.description.references Moreno, J., Kelly, R., Campa, R., 2003. Manipulator velocity control using friction compensation. IEE Proceedings Control Theory Applications 150, 119-126. https://doi.org/10.1049/ip-cta:20030083 es_ES
dc.description.references Navarro-Alarcon, D., Liu, Y., Romero, J.G., 2013. Energy shaping methods for asymptotic force regulation of compliant mechanical systems. IEEE Transactions on Control Systems Technology 22, 2376-2383. https://doi.org/10.1109/TCST.2014.2309659 es_ES
dc.description.references Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H., 1998. Passivity-based control of Euler-Lagrange systems: Mechanical and electromechanical applications. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-3603-3 es_ES
dc.description.references Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B., 2001. Putting energy back in control. IEEE Control Systems Magazine 21, 18-33. https://doi.org/10.1109/37.915398 es_ES
dc.description.references Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G., 2002. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control 47, 1213-1233. https://doi.org/10.1109/TAC.2002.800770 es_ES
dc.description.references Romero, J.G., Donaire, A., Ortega, R., 2013. Robust energy shaping control of mechanical systems. Systems and Control Letters 62, 770-780. https://doi.org/10.1016/j.sysconle.2013.05.011 es_ES
dc.description.references Romero, J.G., Ortega, R., Sarras, I., 2015. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control 60, 818-823. https://doi.org/10.1109/TAC.2014.2330701 es_ES
dc.description.references Sandoval, J., Kelly, R., Santibañez, V., 2020. A speed regulator for a torque-driven inertia wheel pendulum. IFAC Proceedings Volumes 53, 6371-6376. doi: 110.1016/j.ifacol.2020.12.1749 es_ES
dc.description.references Sandoval, J., Kelly, R., Santibañez, V., 2021a. Energy regulation of torque-driven robot manipulators in joint space. Journal of the Franklin Institute 359, 1427-1456. https://doi.org/10.1016/j.jfranklin.2022.01.034 es_ES
dc.description.references Sandoval, J., Kelly, R., Santibañez, V., 2021b. An output feedback position/speed regulator for a torque-driven inertia wheel pendulum. International Journal of Systems Science 19, 3451-3463. https://doi.org/10.1007/s12555-020-0744-7 es_ES
dc.description.references Sandoval, J., Kelly, R., Santibañez, V., 2021c. A speed regulator for a force-driven cart-pole system. International Journal of Control, Automation and Systems 19, 3451-3463. https://doi.org/10.1080/00207721.2021.1958950 es_ES
dc.description.references Sandoval, J., Moyron, J., Kelly, R., Santib ' a'nez, V., Moreno-Valenzuela, J., 2021d. Energy regulation for a torque-driven vertical inertia wheel pendulum. Control Engineering Practice 115, 1-13. https://doi.org/10.1016/j.conengprac.2021.104909 es_ES
dc.description.references Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.1994.407375 es_ES
dc.description.references Takegaki, M., Arimoto, S., 1981. A new feedback method for dynamic control of manipulators. Transactions ASME, Journal of Dynamic Systems, Measurement and Control 103, 119-125. https://doi.org/10.1115/1.3139651 es_ES
dc.description.references Tanaka, N., Fujita, M., 2015. Energy shaping control method for robotic force/position regulation and motion control. IFAC Proceedings Volumes 32, 1136-1141. https://doi.org/10.1016/S1474-6670(17)56192-3 es_ES
dc.description.references Viola, G., Ortega, R., Banavar, J., Acosta, J.A., Astolfi, A., 2007. Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Transactions on Automatic Control 52, 1093-1099. https://doi.org/10.1109/TAC.2007.899064 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem