Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I
Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562
Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678
[+]
Ailon, A., Ortega, R., 1993. An observer-based set-point controller for robot manipulators with flexible joints. Systems and Control Letters 21, 329-335. https://doi.org/10.1016/0167-6911(93)90076-I
Bloch, A.M., Leonard, N., Marsden, J., 2000. Controlled lagrangian and the stabilization of mechanical systems i: the first matching theorem. IEEE Transactions on Automatic Control 45, 2253-2270. https://doi.org/10.1109/9.895562
Cruz-Zavala, E., Nuno, E., Moreno, J.A., 2017. Finite-time regulation of robot manipulators: an energy shaping approach. IFAC Proceedings Volumes 50, 9583-9588. https://doi.org/10.1016/j.ifacol.2017.08.1678
Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H., 2009. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. Springer-Verlag, Germany. https://doi.org/10.1007/978-3-642-03196-0
Ebrahimi, R., Ahmad, A., Mahboobi, R., 2021. Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mechanical Systems and Signal Processing 150, 1-13. https://doi.org/10.1016/j.ymssp.2020.107239
Franco, E., Garriga-Casanovas, A., 2021. Energy-shaping control of soft continuum manipulators with in-plane disturbances. The International Journal of Robotics Research 40, 236-255. https://doi.org/10.1177/0278364920907679
Fujimoto, K., Sakurama, K., Sugie, T., 2003. Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39, 2059-2069. https://doi.org/10.1016/j.automatica.2003.07.005
Fujimoto, K., Sugie, T., 2004. Trajectory tracking control of nonholonomic hamiltonian systems via generalized canonical transformations. European Journal of Control 10, 421-431. https://doi.org/10.3166/ejc.10.421-431
Kelly, J., Sandoval, J., Santibañez, V., 2021. A guas joint position tracking controller of torque-driven robot manipulators infuenced by dynamic dahl friction: theory and experiments. IEEE Transactions on Control Systems Technology 29, 1877-1890. https://doi.org/10.1109/TCST.2020.3024134
Kelly, R., 1993. A simple set-point robot controller by using only position measurements. IFAC Proceedings Volumes 26, 527-530. https://doi.org/10.1016/S1474-6670(17)48783-0
Kelly, R., 1999. Regulation of manipulators in generic task space: an energy shaping plus damping injection approach. IEEE Transactions on Robotic and Automation 15, 381-386. https://doi.org/10.1109/70.760361
Kelly, R., 2015. Total energy function with damping assignment (tefda): A novel control objective in robotics. In: Proccedings XVI Workshop on Information Processing and Control (RPIC) , 1-6. https://doi.org/10.1109/RPIC.2015.7497057
Kelly, R., Santibañez, V., 1998. Global regulation of elastic joint robots based on energy shaping. IEEE Transactions on Automatic Control 43, 1451-1456. https://doi.org/10.1109/9.720506
Kelly, R., Santibañez, V., Loría, A., 2005. Control of Robot Manipulators in Joint Space. Springer-Verlag, London.
Khalil, H.K., 2005. Nonlinear Systems. Prentice-Hall, USA.
Liu, Y., Xin, X., 2017. Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dynamics 88, 1749-1768. https://doi.org/10.1007/s11071-017-3343-2
Lozano, R., Fantoni, I., Block, D., 2000. Stabilization of the inverted pendulum around its homoclinic orbit. Systems and Control Letters 40, 197-204. https://doi.org/10.1016/S0167-6911(00)00025-6
Moreno, J., Kelly, R., Campa, R., 2003. Manipulator velocity control using friction compensation. IEE Proceedings Control Theory Applications 150, 119-126. https://doi.org/10.1049/ip-cta:20030083
Navarro-Alarcon, D., Liu, Y., Romero, J.G., 2013. Energy shaping methods for asymptotic force regulation of compliant mechanical systems. IEEE Transactions on Control Systems Technology 22, 2376-2383. https://doi.org/10.1109/TCST.2014.2309659
Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H., 1998. Passivity-based control of Euler-Lagrange systems: Mechanical and electromechanical applications. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-3603-3
Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B., 2001. Putting energy back in control. IEEE Control Systems Magazine 21, 18-33. https://doi.org/10.1109/37.915398
Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G., 2002. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control 47, 1213-1233. https://doi.org/10.1109/TAC.2002.800770
Romero, J.G., Donaire, A., Ortega, R., 2013. Robust energy shaping control of mechanical systems. Systems and Control Letters 62, 770-780. https://doi.org/10.1016/j.sysconle.2013.05.011
Romero, J.G., Ortega, R., Sarras, I., 2015. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control 60, 818-823. https://doi.org/10.1109/TAC.2014.2330701
Sandoval, J., Kelly, R., Santibañez, V., 2020. A speed regulator for a torque-driven inertia wheel pendulum. IFAC Proceedings Volumes 53, 6371-6376. doi: 110.1016/j.ifacol.2020.12.1749
Sandoval, J., Kelly, R., Santibañez, V., 2021a. Energy regulation of torque-driven robot manipulators in joint space. Journal of the Franklin Institute 359, 1427-1456. https://doi.org/10.1016/j.jfranklin.2022.01.034
Sandoval, J., Kelly, R., Santibañez, V., 2021b. An output feedback position/speed regulator for a torque-driven inertia wheel pendulum. International Journal of Systems Science 19, 3451-3463. https://doi.org/10.1007/s12555-020-0744-7
Sandoval, J., Kelly, R., Santibañez, V., 2021c. A speed regulator for a force-driven cart-pole system. International Journal of Control, Automation and Systems 19, 3451-3463. https://doi.org/10.1080/00207721.2021.1958950
Sandoval, J., Moyron, J., Kelly, R., Santib ' a'nez, V., Moreno-Valenzuela, J., 2021d. Energy regulation for a torque-driven vertical inertia wheel pendulum. Control Engineering Practice 115, 1-13. https://doi.org/10.1016/j.conengprac.2021.104909
Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.1994.407375
Takegaki, M., Arimoto, S., 1981. A new feedback method for dynamic control of manipulators. Transactions ASME, Journal of Dynamic Systems, Measurement and Control 103, 119-125. https://doi.org/10.1115/1.3139651
Tanaka, N., Fujita, M., 2015. Energy shaping control method for robotic force/position regulation and motion control. IFAC Proceedings Volumes 32, 1136-1141. https://doi.org/10.1016/S1474-6670(17)56192-3
Viola, G., Ortega, R., Banavar, J., Acosta, J.A., Astolfi, A., 2007. Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Transactions on Automatic Control 52, 1093-1099. https://doi.org/10.1109/TAC.2007.899064
[-]