- -

ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas

Mostrar el registro completo del ítem

Prados, C.; Hernando, M.; Gambao, E.; Brunete, A. (2023). ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas. Revista Iberoamericana de Automática e Informática industrial. 20(2):175-186. https://doi.org/10.4995/riai.2022.18749

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192860

Ficheros en el ítem

Metadatos del ítem

Título: ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas
Otro titulo: ROMERIN: A climbing robotic organism based on modular legs with active suction cups
Autor: Prados, Carlos Hernando, Miguel Gambao, Ernesto Brunete, Alberto
Fecha difusión:
Resumen:
[EN] This article presents the ROMERIN robot, a modular robotic organism composed of legs that use active suction cups as system of adhesion to the environment, and whose objective is the inspection of infrastructures by ...[+]


[ES] Este artículo presenta el robot ROMERIN, un organismo robótico modularmente compuesto por patas que utilizan ventosas activas como sistema de adhesión al entorno, y cuyo objetivo es la inspección de infraestructuras ...[+]
Palabras clave: Kinematics of robot for control , Model of robots and multi-robot systems for control , Field , Marine , Submarine and aereal robotics , Cinemática de robots para control , Modelado de robots y sistemas multi-robot para control , Robótica de campo , Marina y submarina y aérea
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.18749
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.18749
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85738-R/ES/ROBOT MODULAR ESCALADOR PARA INSPECCION DE INFRAESTRUCTURAS/
info:eu-repo/grantAgreement/CM/Madrid Robotics Digital Innovation Hub/S2018/NMT-4331
Agradecimientos:
Esta investigación ha recibido financiación de RobotCity230-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, fundado por “Programas de Actividades I+D en la Comunidad de Madrid” y cofinanciado por “Structural ...[+]
Tipo: Artículo

References

Alkalla, M. G., Fanni, M. A., Mohamed, A. M., Hashimoto, S., mar 2017. Teleoperated propeller-type climbing robot for inspection of petrochemical vessels. Industrial Robot: An International Journal 44 (2), 166-177. https://doi.org/10.1108/IR-07-2016-0182

Andrikopoulos, G., Papadimitriou, A., Brusell, A., Nikolakopoulos, G., nov 2019. On model-based adhesion control of a vortex climbing robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS40897.2019.8968069

Baghani, A., Ahmadabadi, M., Harati, A., 2005. Kinematics modeling of a wheel-based pole climbing robot (UT-PCR). In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE. URL: https://doi.org/10.1109%2Frobot.2005.1570423 [+]
Alkalla, M. G., Fanni, M. A., Mohamed, A. M., Hashimoto, S., mar 2017. Teleoperated propeller-type climbing robot for inspection of petrochemical vessels. Industrial Robot: An International Journal 44 (2), 166-177. https://doi.org/10.1108/IR-07-2016-0182

Andrikopoulos, G., Papadimitriou, A., Brusell, A., Nikolakopoulos, G., nov 2019. On model-based adhesion control of a vortex climbing robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS40897.2019.8968069

Baghani, A., Ahmadabadi, M., Harati, A., 2005. Kinematics modeling of a wheel-based pole climbing robot (UT-PCR). In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE. URL: https://doi.org/10.1109%2Frobot.2005.1570423

Bandyopadhyay, T., Steindl, R., Talbot, F., Kottege, N., Dungavell, R., Wood, B., Barker, J., Hoehn, K., Elfes, A., oct 2018. Magneto: A versatile multilimbed inspection robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2018.8593891

Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P., Hutter, M., 2016. Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, pp. 558-564. URL: https://doi.org/10.1109%2Fhumanoids.2016.7803330

Bisht, R. S., Pathak, P. M., Panigrahi, S. K., 2022. Design and development of a glass fac¸ade cleaning robot. Mechanism and Machine Theory 168, 104585. https://doi.org/10.1016/j.mechmachtheory.2021.104585

Buettner, T., Heppner, G., Roennau, A., Dillmann, R., jul 2019. Nimble limbs - intelligent attachable legs to create walking robots from variously shaped objects. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE. https://doi.org/10.1109/AIM.2019.8868845

Buettner, T., Wilke, D., Roennau, A., Heppner, G., Dillmann, R., sep 2018. A scalable, modular leg design for multi-legged stair climbing robots. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.34

B¨uschges, A., Schmidt, J., dec 2015. Neuronal control of walking: studies on insects. e-Neuroforum 21 (4), 105-112. https://doi.org/10.1515/s13295-015-0017-8

Desai, R., Li, B., Yuan, Y., Coros, S., sep 2018. Interactive co-design of form and function for legged robots using the adjoint method. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.26

Eto, H., Asada, H. H., may 2020. Development of a wheeled wall-climbing robot with a shape-adaptive magnetic adhesion mechanism. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/ICRA40945.2020.9196919

Fankhauser, P., Bellicoso, C. D., Gehring, C., Dube, R., Gawel, A., Hutter, M., nov 2016. Free gait - an architecture for the versatile control of legged robots. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE. https://doi.org/10.1109/HUMANOIDS.2016.7803401

Ge, D., Ren, C., Matsuno, T., Ma, S., oct 2016. Guide rail design for a passive suction cup based wall-climbing robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2016.7759850

Gilpin, K., Rus, D., sep 2010. Modular robot systems. IEEE Robotics & Automation Magazine 17 (3), 38-55. https://doi.org/10.1109/MRA.2010.937859

Grieco, J., Prieto, M., Armada, M., de Santos, P. G., 1998. A six-legged climbing robot for high payloads. In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104). IEEE. URL: https://doi.org/10.1109%2Fcca.1998.728488

Hernando, M., Alonso, M., Prados, C., Gambao, E., 2021a. Behaviorbased control architecture for legged-and-climber robots. Applied Sciences 11 (20). https://doi.org/10.3390/app11209547

Hernando, M., Brunete, A., Gambao, E., 2019. ROMERIN: A modular climber robot for infrastructure inspection. IFAC-PapersOnLine 52 (15), 424-429. https://doi.org/10.1016/j.ifacol.2019.11.712

Hernando, M., Gambao, E., Prados, C., Brito, D., Brunete, A., 2022. ROMERIN: A new concept of a modular autonomous climbing robot. International Journal of Advanced Robotic Systems 19 (5), 17298806221123416. https://doi.org/10.1177/17298806221123416

Hernando, M., G'omez, V., Brunete, A., Gambao, E., feb 2021b. CFD modelling and optimization procedure of an adhesive system for a modular climbing robot. Sensors 21 (4), 1117. https://doi.org/10.3390/s21041117

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L., 2016. Momentum control with hierarchical inverse dynamics on a torquecontrolled humanoid. Autonomous Robots 40 (3), 473-491. https://doi.org/10.1007/s10514-015-9476-6

Humza, R., Scholz, O., Mokhtar, M., Timmis, J., Tyrrell, A., nov 2009. Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism. In: 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns. IEEE. https://doi.org/10.1109/ComputationWorld.2009.83

Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., Siegwart, R., jul 2012. Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Adaptive Mobile Robotics. World Scientific, pp. 483-490. https://doi.org/10.1142/9789814415958_0062

Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A., Hoepflinger, M., oct 2016. ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ https://doi.org/10.1109/IROS.2016.7758092

International Conference on Intelligent Robots and Systems (IROS). IEEE. URL: https://doi.org/10.1109%2Firos.2016.7758092

Iida, F., oct 2007. Autonomous robots: From biological inspiration to implementation and control. Artificial Life 13 (4), 419-421. https://doi.org/10.1162/artl.2007.13.4.419

Jakimovski, B., Meyer, B., Maehle, E., 2009. Self-reconfiguring hexapod robot oscar using organically inspired approaches and innovative robot leg amputation mechanism. In: International Conference on Automation, Robotics and Control Systems, ARCS-09, Orlando, USA. https://doi.org/10.5772/8838

Kamagaluh, B., Kumar, J. S., Virk, G. S., jul 2012. Design of multi-terrain climbing robot for petrochemical applications. In: Adaptive Mobile Robotics. World Scientific, pp. 639-646. https://doi.org/10.1142/9789814415958_0082

Katz, D., Kenney, J., Brock, O., 2008. How can robots succeed in unstructured environments. In: In Workshop on Robot Manipulation: Intelligence in Human Environments at Robotics: Science and Systems. Citeseer.

Kennedy, B., Okon, A., Aghazarian, H., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z., Dabiri, B. E., Garrett, M., Magnone, L., Sherrit, S., jul 2006. Lemur IIb: a robotic system for steep terrain access. Industrial Robot: An International Journal 33 (4), 265-269. https://doi.org/10.1108/01439910610667872

Kim, D., Di Carlo, J., Katz, B., Bledt, G., Kim, S., 2019. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv preprint arXiv:1909.06586.

Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D., Kim, J., aug 2008. Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology 22 (8), 1490-1498. https://doi.org/10.1007/s12206-008-0413-x

Longo, D., Muscato, G., mar 2006. The alicia/sup 3/ climbing robot: a threemodule robot for automatic wall inspection. IEEE Robotics & Automation Magazine 13 (1), 42-50. https://doi.org/10.1109/MRA.2006.1598052

Maehle, E., Brockmann, W., Grosspietsch, K.-E., Auf, A. E. S., Jakimovski, B., Krannich, S., Litza, M., Maas, R., Al-Homsy, A., 2011. Application of the organic robot control architecture ORCA to the six-legged walking robot OSCAR. In: Organic Computing-A Paradigm Shift for Complex Systems. Springer Basel, pp. 517-530. https://doi.org/10.1007/978-3-0348-0130-0_34

Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M., Coros, S., nov 2015. Interactive design of 3d-printable robotic creatures. ACM Transactions on Graphics 34 (6), 1-9. https://doi.org/10.1145/2816795.2818137

Murray IV, T. J., Pham, B. N., Pirjanian, P., May 3 2005. Hardware abstraction layer for a robot. US Patent 6,889,118.

Peidró, A., Tavakoli, M., Mar'ın, J. M., Reinoso, O., may 2019. Design of compact switchable magnetic grippers for the HyReCRo structure-climbing robot. Mechatronics 59, 199-212. https://doi.org/10.1016/j.mechatronics.2019.04.007

Peters, G., Pagano, D., Liu, D., Waldron, K., aug 2010. A prototype climbing robot for inspection of complex ferrous structures. In: Emerging Trends in Mobile Robotics. World Scientific. https://doi.org/10.1142/9789814329927_0020

Prados, C., Buonocore, L. R., Castro, M. D., jul 2021. Omnidirectional robotic platform for surveillance of particle accelerator environments with limited space areas. Applied Sciences 11 (14), 6631. https://doi.org/10.3390/app11146631

Qiaoling, D., Yan, L., Sinan, L., 2019. Design of a micro pole-climbing robot. International Journal of Advanced Robotic Systems 16 (3), https://doi.org/10.1177/1729881419852813

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008. BigDog, the roughterrain quadruped robot. IFAC Proceedings Volumes 41 (2), 10822-10825. https://doi.org/10.3182/20080706-5-KR-1001.01833

Roennau, A., Heppner, G., Nowicki, M., Dillmann, R., jul 2014. LAURON v: A versatile six-legged walking robot with advanced maneuverability. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE. https://doi.org/10.1109/AIM.2014.6878051

Schmidt, D., Berns, K., dec 2013. Climbing robots for maintenance and inspections of vertical structures-a survey of design aspects and technologies. Robotics and Autonomous Systems 61 (12), 1288-1305. https://doi.org/10.1016/j.robot.2013.09.002

Sombolestan, M., Chen, Y., Nguyen, Q., 2021. Adaptive force-based control for legged robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7440-7447. https://doi.org/10.1109/IROS51168.2021.9636393

Sprowitz, A., Pouya, S., Bonardi, S., Kieboom, J. V. D., Mockel, R., Billard, A., Dillenbourg, P., Ijspeert, A. J., aug 2010. Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine 5 (3), 20- 32. https://doi.org/10.1109/MCI.2010.937320

Spr¨owitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A., jul 2014. Roombots: A hardware perspective on 3d self-reconfiguration and locomotion with a homogeneous modular robot. Robotics and Autonomous Systems 62 (7), 1016-1033. https://doi.org/10.1016/j.robot.2013.08.011

Tan, K. C., Wang, L., Lee, T. H., Vadakkepat, P., jul 2006. Evolvable hardware in evolutionary robotics. In: World Scientific Series in Robotics and Intelligent Systems. World Scientific, pp. 33-62. https://doi.org/10.1142/9789812773142_0002

Tanaka, Y., Shirai, Y., Lin, X., Schperberg, A., Kato, H., Swerdlow, A., Kumagai, N., Hong, D., 2022. Scaler: A tough versatile quadruped free-climber robot. arXiv preprint arXiv:2207.01180. https://doi.org/10.1109/IROS47612.2022.9981555

Tavakoli, M., Viegas, C., Marques, L., Pires, J. N., de Almeida, A. T., sep 2013. OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robotics and Autonomous Systems 61 (9), 997-1007. https://doi.org/10.1016/j.robot.2013.05.005

Wang, M., Su, Y., Liu, H., Xu, Y., aug 2020. WalkingBot: Modular interactive legged robot with automated structure sensing and motion planning. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE. https://doi.org/10.1109/RO-MAN47096.2020.9223474

Yim, M., Zhang, Y., Duff, D., feb 2002. Modular robots. IEEE Spectrum 39 (2), 30-34. https://doi.org/10.1109/6.981854

Yoshida, Y., Ma, S., dec 2010. Design of a wall-climbing robot with passive suction cups. In: 2010 IEEE International Conference on Robotics and Biomimetics. IEEE. https://doi.org/10.1109/ROBIO.2010.5723554

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem