- -

ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prados, Carlos es_ES
dc.contributor.author Hernando, Miguel es_ES
dc.contributor.author Gambao, Ernesto es_ES
dc.contributor.author Brunete, Alberto es_ES
dc.date.accessioned 2023-04-20T07:50:18Z
dc.date.available 2023-04-20T07:50:18Z
dc.date.issued 2023-03-31
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/192860
dc.description.abstract [EN] This article presents the ROMERIN robot, a modular robotic organism composed of legs that use active suction cups as system of adhesion to the environment, and whose objective is the inspection of infrastructures by means of climbing. The physical structure of the robotic organism is detailed, including an explanation of the modules and the body. It is also included a description of the control architecture, which is focused on the torque-based control of the position of the organism body, whose number of legs and their arrangement is variable, giving the system versatility for use in different environments and applications. The designed control architecture serves as a basis for the control of legged climbing robots with any number of legs. Its performance has been checked on the physical ROMERIN robot and its digital twin, recording and displaying the obtained results. In addition, the performance of the control architecture has been verified for different configurations of the organism, concluding its modularity and versatility for different applications. es_ES
dc.description.abstract [ES] Este artículo presenta el robot ROMERIN, un organismo robótico modularmente compuesto por patas que utilizan ventosas activas como sistema de adhesión al entorno, y cuyo objetivo es la inspección de infraestructuras mediante la escalada. Se detalla la estructura física del organismo robótico, incluyendo una explicación de los módulos y del cuerpo. También se incluye una descripción de la arquitectura de control basada en el control en par de la posición del cuerpo del organismo, cuyo número de patas y disposición de las mismas es variable de forma que el sistema es versátil para su utilización en diferentes entornos y aplicaciones. La arquitectura de control que se ha diseñado sirve de base para el control de robots escaladores con patas de cualquier número de patas. Se ha comprobado su funcionamiento en el robot físico ROMERIN y en su gemelo digital (digital twin), registrando y mostrando dichos resultados. Además, se ha comprobado el funcionamiento de la arquitectura de control para diferentes configuraciones del organismo, demostrando su modularidad y versatilidad para diferentes aplicaciones. es_ES
dc.description.sponsorship Esta investigación ha recibido financiación de RobotCity230-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, fundado por “Programas de Actividades I+D en la Comunidad de Madrid” y cofinanciado por “Structural Funds of the EU”. El proyecto en el cual este trabajo esta siendo desarrollado fue inicialmente fundado por el Plan Nacional Español de Investigación e Innovación de Ciencia y Tecnología, DPI2017-85738-R. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Kinematics of robot for control es_ES
dc.subject Model of robots and multi-robot systems for control es_ES
dc.subject Field es_ES
dc.subject Marine es_ES
dc.subject Submarine and aereal robotics es_ES
dc.subject Cinemática de robots para control es_ES
dc.subject Modelado de robots y sistemas multi-robot para control es_ES
dc.subject Robótica de campo es_ES
dc.subject Marina y submarina y aérea es_ES
dc.title ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas es_ES
dc.title.alternative ROMERIN: A climbing robotic organism based on modular legs with active suction cups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.18749
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85738-R/ES/ROBOT MODULAR ESCALADOR PARA INSPECCION DE INFRAESTRUCTURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CM/Madrid Robotics Digital Innovation Hub/S2018/NMT-4331 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Prados, C.; Hernando, M.; Gambao, E.; Brunete, A. (2023). ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas. Revista Iberoamericana de Automática e Informática industrial. 20(2):175-186. https://doi.org/10.4995/riai.2022.18749 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.18749 es_ES
dc.description.upvformatpinicio 175 es_ES
dc.description.upvformatpfin 186 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18749 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.description.references Alkalla, M. G., Fanni, M. A., Mohamed, A. M., Hashimoto, S., mar 2017. Teleoperated propeller-type climbing robot for inspection of petrochemical vessels. Industrial Robot: An International Journal 44 (2), 166-177. https://doi.org/10.1108/IR-07-2016-0182 es_ES
dc.description.references Andrikopoulos, G., Papadimitriou, A., Brusell, A., Nikolakopoulos, G., nov 2019. On model-based adhesion control of a vortex climbing robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS40897.2019.8968069 es_ES
dc.description.references Baghani, A., Ahmadabadi, M., Harati, A., 2005. Kinematics modeling of a wheel-based pole climbing robot (UT-PCR). In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE. URL: https://doi.org/10.1109%2Frobot.2005.1570423 es_ES
dc.description.references Bandyopadhyay, T., Steindl, R., Talbot, F., Kottege, N., Dungavell, R., Wood, B., Barker, J., Hoehn, K., Elfes, A., oct 2018. Magneto: A versatile multilimbed inspection robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2018.8593891 es_ES
dc.description.references Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P., Hutter, M., 2016. Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, pp. 558-564. URL: https://doi.org/10.1109%2Fhumanoids.2016.7803330 es_ES
dc.description.references Bisht, R. S., Pathak, P. M., Panigrahi, S. K., 2022. Design and development of a glass fac¸ade cleaning robot. Mechanism and Machine Theory 168, 104585. https://doi.org/10.1016/j.mechmachtheory.2021.104585 es_ES
dc.description.references Buettner, T., Heppner, G., Roennau, A., Dillmann, R., jul 2019. Nimble limbs - intelligent attachable legs to create walking robots from variously shaped objects. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE. https://doi.org/10.1109/AIM.2019.8868845 es_ES
dc.description.references Buettner, T., Wilke, D., Roennau, A., Heppner, G., Dillmann, R., sep 2018. A scalable, modular leg design for multi-legged stair climbing robots. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.34 es_ES
dc.description.references B¨uschges, A., Schmidt, J., dec 2015. Neuronal control of walking: studies on insects. e-Neuroforum 21 (4), 105-112. https://doi.org/10.1515/s13295-015-0017-8 es_ES
dc.description.references Desai, R., Li, B., Yuan, Y., Coros, S., sep 2018. Interactive co-design of form and function for legged robots using the adjoint method. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.26 es_ES
dc.description.references Eto, H., Asada, H. H., may 2020. Development of a wheeled wall-climbing robot with a shape-adaptive magnetic adhesion mechanism. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/ICRA40945.2020.9196919 es_ES
dc.description.references Fankhauser, P., Bellicoso, C. D., Gehring, C., Dube, R., Gawel, A., Hutter, M., nov 2016. Free gait - an architecture for the versatile control of legged robots. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE. https://doi.org/10.1109/HUMANOIDS.2016.7803401 es_ES
dc.description.references Ge, D., Ren, C., Matsuno, T., Ma, S., oct 2016. Guide rail design for a passive suction cup based wall-climbing robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2016.7759850 es_ES
dc.description.references Gilpin, K., Rus, D., sep 2010. Modular robot systems. IEEE Robotics & Automation Magazine 17 (3), 38-55. https://doi.org/10.1109/MRA.2010.937859 es_ES
dc.description.references Grieco, J., Prieto, M., Armada, M., de Santos, P. G., 1998. A six-legged climbing robot for high payloads. In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104). IEEE. URL: https://doi.org/10.1109%2Fcca.1998.728488 es_ES
dc.description.references Hernando, M., Alonso, M., Prados, C., Gambao, E., 2021a. Behaviorbased control architecture for legged-and-climber robots. Applied Sciences 11 (20). https://doi.org/10.3390/app11209547 es_ES
dc.description.references Hernando, M., Brunete, A., Gambao, E., 2019. ROMERIN: A modular climber robot for infrastructure inspection. IFAC-PapersOnLine 52 (15), 424-429. https://doi.org/10.1016/j.ifacol.2019.11.712 es_ES
dc.description.references Hernando, M., Gambao, E., Prados, C., Brito, D., Brunete, A., 2022. ROMERIN: A new concept of a modular autonomous climbing robot. International Journal of Advanced Robotic Systems 19 (5), 17298806221123416. https://doi.org/10.1177/17298806221123416 es_ES
dc.description.references Hernando, M., G'omez, V., Brunete, A., Gambao, E., feb 2021b. CFD modelling and optimization procedure of an adhesive system for a modular climbing robot. Sensors 21 (4), 1117. https://doi.org/10.3390/s21041117 es_ES
dc.description.references Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L., 2016. Momentum control with hierarchical inverse dynamics on a torquecontrolled humanoid. Autonomous Robots 40 (3), 473-491. https://doi.org/10.1007/s10514-015-9476-6 es_ES
dc.description.references Humza, R., Scholz, O., Mokhtar, M., Timmis, J., Tyrrell, A., nov 2009. Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism. In: 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns. IEEE. https://doi.org/10.1109/ComputationWorld.2009.83 es_ES
dc.description.references Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., Siegwart, R., jul 2012. Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Adaptive Mobile Robotics. World Scientific, pp. 483-490. https://doi.org/10.1142/9789814415958_0062 es_ES
dc.description.references Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A., Hoepflinger, M., oct 2016. ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ https://doi.org/10.1109/IROS.2016.7758092 es_ES
dc.description.references International Conference on Intelligent Robots and Systems (IROS). IEEE. URL: https://doi.org/10.1109%2Firos.2016.7758092 es_ES
dc.description.references Iida, F., oct 2007. Autonomous robots: From biological inspiration to implementation and control. Artificial Life 13 (4), 419-421. https://doi.org/10.1162/artl.2007.13.4.419 es_ES
dc.description.references Jakimovski, B., Meyer, B., Maehle, E., 2009. Self-reconfiguring hexapod robot oscar using organically inspired approaches and innovative robot leg amputation mechanism. In: International Conference on Automation, Robotics and Control Systems, ARCS-09, Orlando, USA. https://doi.org/10.5772/8838 es_ES
dc.description.references Kamagaluh, B., Kumar, J. S., Virk, G. S., jul 2012. Design of multi-terrain climbing robot for petrochemical applications. In: Adaptive Mobile Robotics. World Scientific, pp. 639-646. https://doi.org/10.1142/9789814415958_0082 es_ES
dc.description.references Katz, D., Kenney, J., Brock, O., 2008. How can robots succeed in unstructured environments. In: In Workshop on Robot Manipulation: Intelligence in Human Environments at Robotics: Science and Systems. Citeseer. es_ES
dc.description.references Kennedy, B., Okon, A., Aghazarian, H., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z., Dabiri, B. E., Garrett, M., Magnone, L., Sherrit, S., jul 2006. Lemur IIb: a robotic system for steep terrain access. Industrial Robot: An International Journal 33 (4), 265-269. https://doi.org/10.1108/01439910610667872 es_ES
dc.description.references Kim, D., Di Carlo, J., Katz, B., Bledt, G., Kim, S., 2019. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv preprint arXiv:1909.06586. es_ES
dc.description.references Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D., Kim, J., aug 2008. Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology 22 (8), 1490-1498. https://doi.org/10.1007/s12206-008-0413-x es_ES
dc.description.references Longo, D., Muscato, G., mar 2006. The alicia/sup 3/ climbing robot: a threemodule robot for automatic wall inspection. IEEE Robotics & Automation Magazine 13 (1), 42-50. https://doi.org/10.1109/MRA.2006.1598052 es_ES
dc.description.references Maehle, E., Brockmann, W., Grosspietsch, K.-E., Auf, A. E. S., Jakimovski, B., Krannich, S., Litza, M., Maas, R., Al-Homsy, A., 2011. Application of the organic robot control architecture ORCA to the six-legged walking robot OSCAR. In: Organic Computing-A Paradigm Shift for Complex Systems. Springer Basel, pp. 517-530. https://doi.org/10.1007/978-3-0348-0130-0_34 es_ES
dc.description.references Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M., Coros, S., nov 2015. Interactive design of 3d-printable robotic creatures. ACM Transactions on Graphics 34 (6), 1-9. https://doi.org/10.1145/2816795.2818137 es_ES
dc.description.references Murray IV, T. J., Pham, B. N., Pirjanian, P., May 3 2005. Hardware abstraction layer for a robot. US Patent 6,889,118. es_ES
dc.description.references Peidró, A., Tavakoli, M., Mar'ın, J. M., Reinoso, O., may 2019. Design of compact switchable magnetic grippers for the HyReCRo structure-climbing robot. Mechatronics 59, 199-212. https://doi.org/10.1016/j.mechatronics.2019.04.007 es_ES
dc.description.references Peters, G., Pagano, D., Liu, D., Waldron, K., aug 2010. A prototype climbing robot for inspection of complex ferrous structures. In: Emerging Trends in Mobile Robotics. World Scientific. https://doi.org/10.1142/9789814329927_0020 es_ES
dc.description.references Prados, C., Buonocore, L. R., Castro, M. D., jul 2021. Omnidirectional robotic platform for surveillance of particle accelerator environments with limited space areas. Applied Sciences 11 (14), 6631. https://doi.org/10.3390/app11146631 es_ES
dc.description.references Qiaoling, D., Yan, L., Sinan, L., 2019. Design of a micro pole-climbing robot. International Journal of Advanced Robotic Systems 16 (3), https://doi.org/10.1177/1729881419852813 es_ES
dc.description.references Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008. BigDog, the roughterrain quadruped robot. IFAC Proceedings Volumes 41 (2), 10822-10825. https://doi.org/10.3182/20080706-5-KR-1001.01833 es_ES
dc.description.references Roennau, A., Heppner, G., Nowicki, M., Dillmann, R., jul 2014. LAURON v: A versatile six-legged walking robot with advanced maneuverability. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE. https://doi.org/10.1109/AIM.2014.6878051 es_ES
dc.description.references Schmidt, D., Berns, K., dec 2013. Climbing robots for maintenance and inspections of vertical structures-a survey of design aspects and technologies. Robotics and Autonomous Systems 61 (12), 1288-1305. https://doi.org/10.1016/j.robot.2013.09.002 es_ES
dc.description.references Sombolestan, M., Chen, Y., Nguyen, Q., 2021. Adaptive force-based control for legged robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7440-7447. https://doi.org/10.1109/IROS51168.2021.9636393 es_ES
dc.description.references Sprowitz, A., Pouya, S., Bonardi, S., Kieboom, J. V. D., Mockel, R., Billard, A., Dillenbourg, P., Ijspeert, A. J., aug 2010. Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine 5 (3), 20- 32. https://doi.org/10.1109/MCI.2010.937320 es_ES
dc.description.references Spr¨owitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A., jul 2014. Roombots: A hardware perspective on 3d self-reconfiguration and locomotion with a homogeneous modular robot. Robotics and Autonomous Systems 62 (7), 1016-1033. https://doi.org/10.1016/j.robot.2013.08.011 es_ES
dc.description.references Tan, K. C., Wang, L., Lee, T. H., Vadakkepat, P., jul 2006. Evolvable hardware in evolutionary robotics. In: World Scientific Series in Robotics and Intelligent Systems. World Scientific, pp. 33-62. https://doi.org/10.1142/9789812773142_0002 es_ES
dc.description.references Tanaka, Y., Shirai, Y., Lin, X., Schperberg, A., Kato, H., Swerdlow, A., Kumagai, N., Hong, D., 2022. Scaler: A tough versatile quadruped free-climber robot. arXiv preprint arXiv:2207.01180. https://doi.org/10.1109/IROS47612.2022.9981555 es_ES
dc.description.references Tavakoli, M., Viegas, C., Marques, L., Pires, J. N., de Almeida, A. T., sep 2013. OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robotics and Autonomous Systems 61 (9), 997-1007. https://doi.org/10.1016/j.robot.2013.05.005 es_ES
dc.description.references Wang, M., Su, Y., Liu, H., Xu, Y., aug 2020. WalkingBot: Modular interactive legged robot with automated structure sensing and motion planning. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE. https://doi.org/10.1109/RO-MAN47096.2020.9223474 es_ES
dc.description.references Yim, M., Zhang, Y., Duff, D., feb 2002. Modular robots. IEEE Spectrum 39 (2), 30-34. https://doi.org/10.1109/6.981854 es_ES
dc.description.references Yoshida, Y., Ma, S., dec 2010. Design of a wall-climbing robot with passive suction cups. In: 2010 IEEE International Conference on Robotics and Biomimetics. IEEE. https://doi.org/10.1109/ROBIO.2010.5723554 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem