- -

Nuevo sistema robótico social de rehabilitación de pacientes pediátricos con parálisis cerebral

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nuevo sistema robótico social de rehabilitación de pacientes pediátricos con parálisis cerebral

Mostrar el registro completo del ítem

Tassinari-Lagos, M.; Romero-Sorozábal, P.; Martín, C.; Blanco, D.; Malfaz, M.; Rocon, E. (2023). Nuevo sistema robótico social de rehabilitación de pacientes pediátricos con parálisis cerebral. Revista Iberoamericana de Automática e Informática industrial. 20(3):315-326. https://doi.org/10.4995/riai.2023.18785

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194755

Ficheros en el ítem

Metadatos del ítem

Título: Nuevo sistema robótico social de rehabilitación de pacientes pediátricos con parálisis cerebral
Otro titulo: New social robotic system for the rehabilitation of pediatric patients with cerebral palsy
Autor: Tassinari-Lagos, Mauro Romero-Sorozábal, Pablo Martín, Carlos Blanco, Dolores Malfaz, María Rocon, Eduardo
Fecha difusión:
Resumen:
[EN] The most common motor disease in pediatric patients is cerebral palsy (CP), which affects their ability to move and maintain balance and posture. This study focuses on robotic rehabilitation therapies, carried out ...[+]


[ES] La parálisis cerebral (PC) es la enfermedad motora más común en pacientes pediátricos, afectando su capacidad para moverse y mantener el balance corporal y la postura. Este estudio se enfoca en las terapias de ...[+]
Palabras clave: Cerebral Palsy , NAO robot , CPWalker , Assistive technology and rehabilitation engineering , Socially assistive robotics , EMG , Parálisis Cerebral , Robot NAO , Tecnología asistencial e ingeniería de rehabilitación , Robótica de asistencia social
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18785
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.18785
Código del Proyecto:
info:eu-repo/grantAgreement/Comunidad de Madrid/RoboCity2030-DIH-CM/S2018/NMT-4331/ES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/
Agradecimientos:
Este trabajo fue apoyado en una parte por el Ministerio de Ciencia e Innovación de España a través del proyecto Discover2Walk bajo la subvención PID2019-105110RB-C31, y en otra parte por los Programas de Actividades I+D ...[+]
Tipo: Artículo

References

Bartlett, D. J., & Palisano, R. J. (2002). Physical Therapists’ Perceptions of Factors Influencing the Acquisition of Motor Abilities of Children With Cerebral Palsy: Implications for Clinical Reasoning. Physical Therapy, 82(3), 237–248. https://doi.org/10.1093/PTJ/82.3.237

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. International Journal of Social Robotics, 1(1), 71–81. https://doi.org/10.1007/s12369-008-0001-3

Bayón, C. (2018). Design, Development and Evaluation of a Robotic Platform for Gait Rehabilitation and Training in Patients with Cerebral Palsy [Universidad Carlos III de Madrid]. http://hdl.handle.net/10261/167024 [+]
Bartlett, D. J., & Palisano, R. J. (2002). Physical Therapists’ Perceptions of Factors Influencing the Acquisition of Motor Abilities of Children With Cerebral Palsy: Implications for Clinical Reasoning. Physical Therapy, 82(3), 237–248. https://doi.org/10.1093/PTJ/82.3.237

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. International Journal of Social Robotics, 1(1), 71–81. https://doi.org/10.1007/s12369-008-0001-3

Bayón, C. (2018). Design, Development and Evaluation of a Robotic Platform for Gait Rehabilitation and Training in Patients with Cerebral Palsy [Universidad Carlos III de Madrid]. http://hdl.handle.net/10261/167024

Booth, A. T. C., Buizer, A. I., Meyns, P., Oude Lansink, I. L. B., Steenbrink, F., & van der Krogt, M. M. (2018). The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Developmental Medicine and Child Neurology, 60(9), 866–883. https://doi.org/10.1111/DMCN.13708

Céspedes Gómez, N., Vivian, A., Echeverria, C., Munera, M., Bogotá, J. G., Rocon, C. E., Cifuentes, C. A., Calderon Echeverria, A. V., & Rocon, E. (2021). First interaction assessment between a social robot and children diagnosed with cerebral palsy in a rehabilitation context. ACM/IEEE International Conference on Human-Robot Interaction, 484–488. https://doi.org/10.1145/3434074.3447219

Comunidad de Madrid. (2022). Hospital Infantil Universitario Niño Jesús. https://www.comunidad.madrid/hospital/ninojesus/. (Último acceso: 8/10/2022).

Delsys Incorporated. (2022). Trigno® Avanti Sensor - Delsys. https://delsys.com/trigno-avanti/. (Último acceso: 2/07/2022).

Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1–11. https://doi.org/10.1155/2011/759764

Fasoli, S. E., Ladenheim, B., Mast, J., & Krebs, H. I. (2012). New horizons for robot-assisted therapy in pediatrics. American Journal of Physical Medicine and Rehabilitation, 91(11 SUPPL.3). https://doi.org/10.1097/PHM.0B013E31826BCFF4

Gardinier, E. S. (2009). The Relationship Between Muscular Co-Contraction and Dynamic Knee Stiffness in ACL-Deficient Non-Copers [University of Delaware]. https://udspace.udel.edu/handle/19716/4251

Kozyavkin, V., Kachmar, O., & Ablikova, I. (2014). Humanoid social robots in the rehabilitation of children with cerebral palsy. Proceedings - REHAB 2014, 430–431. https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2014.255323

Law, M., Darrah, J., Pollock, N., King, G., Rosenbaum, P., Russell, D., Palisano, R., Harris, S., Armstrong, R., & Watt, J. (2009). Family-Centred Functional Therapy for Children with Cerebral Palsy. Physical & Occupational Therapy In Pediatrics, 18(1), 83–102. https://doi.org/10.1080/J006V18N01_06

Max Planck Institute for Psycholinguistics, The Language Archive, N. (2022). ELAN [computer software] (6.3). https://archive.mpi.nl/tla/elan

Meyer-Heim, A., & van Hedel, H. J. A. (2013). Robot-Assisted and Computer-Enhanced Therapies for Children with Cerebral Palsy: Current State and Clinical Implementation. Seminars in Pediatric Neurology, 20(2), 139–145. https://doi.org/https://doi.org/10.1016/j.spen.2013.06.006

Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P., & Fernández, F. (2017). Evaluating the Child–Robot Interaction of the NAOTherapist Platform in Pediatric Rehabilitation. International Journal of Social Robotics, 9(3), 343–358. https://doi.org/10.1007/s12369-017-0402-2

Pulido Pascual, J. C. (2020). Autonomous socially assistive robotics in pediatric clinical practice [Universidad Carlos III de Madrid]. http://hdl.handle.net/10016/31276

Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., & Bax, M. (2007). A report: the definition and classification of cerebral palsy April 2006. Developmental Medicine & Child Neurology, 49(SUPPL. 2), 8–14. https://doi.org/10.1111/J.1469-8749.2007.TB12610.X

Sewell, M. D., Eastwood, D. M., & Wimalasundera, N. (2014). Managing common symptoms of cerebral palsy in children. BMJ, 349. https://doi.org/10.1136/BMJ.G5474

Shamsoddini, A., Amirsalari, S., Hollisaz, M.-T., Rahimnia, A., & Khatibi-Aghda, A. (2014). Management of Spasticity in Children with Cerebral Palsy. Iranian Journal of Pediatrics, 24(4), 345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339555/

SoftBank Robotics. (2022). NAO the humanoid and programmable robo. https://www.softbankrobotics.com/emea/en/nao. (Último acceso: 07/10/2022).

Taylor, T. (2019). Muscles of the Leg and Foot. https://www.innerbody.com/anatomy/muscular/leg-foot

Vallery, H., van Asseldonk, E. H. F., Buss, M., & van der Kooij, H. (2009). Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 23–30. https://doi.org/10.1109/TNSRE.2008.2008278

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem