- -

Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yime, Eugenio es_ES
dc.contributor.author Saltarén, Roque Jacinto es_ES
dc.contributor.author Roldán Mckinley, Javier Agustin es_ES
dc.date.accessioned 2023-11-07T13:01:22Z
dc.date.available 2023-11-07T13:01:22Z
dc.date.issued 2023-09-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/199436
dc.description.abstract [EN] The kinematics and dynamics of parallel mechanisms is a field of research where mechanisms analysis are traditionally carried out using the screw theory. In this article an alternative approach based on group theory and Lie algebra is presented, where both methods, group theory and Lie algebra, are successfully used in the analysis of open kinematic chains. The article begins with a brief introduction to open kinematic chains and its Lie algebra, and later extends the analysis to parallel mechanisms. The article has been written using only traditional vectors an matrices algebra, with the aim of covering the largest number of researchers in the field of Robotics. Typical examples of parallel robots are analyzed in the form of a tutorial, among which are the five-bar mechanism, the spatial four-bar mechanism and the planar 3-RRR robot. It is hoped that the practical approach given to this article will contribute to promoting the use of Lie algebra for the kinematic and dynamic analysis of parallel mechanisms. es_ES
dc.description.abstract [ES] La cinematica y dinámica de mecanismos paralelos es un campo de investigación donde tradicionalmente se realizan los análisis de los mecanismos empleando la teoría de los torsores. En este artículo se presenta un enfoque alternativo, basado en la teoría de grupos y álgebra de Lie, el cual es un método que ha sido utilizado de manera exitosa en el análisis de cadenas cinemáticas abiertas. El artículo inicia con una breve introducción a las cadenas cinemáticas abiertas y su algebra de Lie, y posteriormente aplica dichos conceptos a los mecanismos paralelos. El artículo se ha redactado utilizando unicamente álgebra de vectores y matrices, con el objetivo de cubrir la mayor cantidad de investigadores del campo de la Robótica. En ese sentido, se analizan ejemplos típicos de robots paralelos en forma de tutorial, entre los que se encuentran, el mecanismo de cinco barras, el mecanismo de cuatro barras espacial y el robot 3-RRR planar. Se espera que el enfoque practico dado al presente artículo contribuya a fomentar el uso del algebra de Lie para el análisis cinemático y dinámico de mecanismos paralelos. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Planar 3-RRR Robot es_ES
dc.subject Parallel robots es_ES
dc.subject Dynamic modelling es_ES
dc.subject Multibody dynamics es_ES
dc.subject Five bar mechanisms es_ES
dc.subject Mecanismo cinco barras es_ES
dc.subject Modelamiento dinámico es_ES
dc.subject Robots paralelos es_ES
dc.subject Robot 3-RRR planar es_ES
dc.subject Dinámica multicuerpo es_ES
dc.title Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie es_ES
dc.title.alternative Inverse dynamics of parallel robots: A tutorial with Lie algebra es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.18356
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yime, E.; Saltarén, RJ.; Roldán Mckinley, JA. (2023). Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie. Revista Iberoamericana de Automática e Informática industrial. 20(4):327-346. https://doi.org/10.4995/riai.2023.18356 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.18356 es_ES
dc.description.upvformatpinicio 327 es_ES
dc.description.upvformatpfin 346 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18356 es_ES
dc.description.references Briot, S., Khalil,W., 2015. Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements. Springer. https://doi.org/10.1007/978-3-319-19788-3 es_ES
dc.description.references Featherstone, R., 2008. Rigid Body Dynamics Algorithms. Springer. https://doi.org/10.1007/978-1-4899-7560-7 es_ES
dc.description.references Gallardo, J., Rico, J. M., Frisoli, A., Checcacci, D., Bergamasco, M., 2003. Dynamics of parallel manipulators by means of screw theory. Mechanism and Machine Theory 38, 1113-1131. https://doi.org/10.1016/S0094-114X(03)00054-5 es_ES
dc.description.references Gallardo-Alvarado, J., 2016. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer. https://doi.org/10.1007/978-3-319-31126-5 es_ES
dc.description.references Gallardo-Alvarado, J., Gallardo-Razo, J., 2022. Mechanisms: Kinematic Analysis and Applications in Robotics. Elsevier. es_ES
dc.description.references Gogu, G., 2008. Structural Synthesis of Parallel Robots: Part 1: Methodology. Springer. https://doi.org/10.1007/978-1-4020-5710-6 es_ES
dc.description.references Gogu, G., 2009. Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom. Springer. es_ES
dc.description.references Gogu, G., 2010. Structural Synthesis of Parallel Robots: Part 3: Topologies with Planar Motion of the Moving Platform. Springer. https://doi.org/10.1007/978-90-481-9831-3 es_ES
dc.description.references Gogu, G., 2012. Structural Synthesis of Parallel Robots: Part 4: Other Topologies with Two and Three Degrees of Freedom. Springer. https://doi.org/10.1007/978-94-007-2675-8 es_ES
dc.description.references Gogu, G., 2014. Structural Synthesis of Parallel Robots: Part 5: Basic Overconstrained Topologies with Sch¨onflies Motions. Springer. https://doi.org/10.1007/978-94-007-7401-8 es_ES
dc.description.references Haug, E. J., 1989. Computer Aided Kinematics and Dynamics of Mechanical Systems. Pearson College Div. es_ES
dc.description.references Kim, J., Park, F., 2001. Direct kinematic analysis of 3-rs parallel mechanisms. Mechanism and Machine Theory 36 (10), 1121-1134. https://doi.org/10.1016/S0094-114X(01)00042-8 es_ES
dc.description.references Kong, X., Gosselin, C. M., 2007. Type Synthesis of Parallel Mechanisms. Springer. https://doi.org/10.1115/DETC2006-99628 es_ES
dc.description.references Lynch, K. M., Park, F. C., 2017. Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press. es_ES
dc.description.references Merlet, J. P., 2004. Solving the forward kinematics of a gough-type parallel manipulator with interval analysis. The International Journal of Robotics Research 23 (3), 221-235. https://doi.org/10.1177/0278364904039806 es_ES
dc.description.references Merlet, J. P., 2005. Parallel Robots. Springer. es_ES
dc.description.references Morell, A., Tarokh, M., Acosta, L., 2013. Solving the forward kinematics problem in parallel robots using support vector regression. Engineering Applications of Artificial Intelligence 26 (7), 1698-1706. https://doi.org/10.1016/j.engappai.2013.03.011 es_ES
dc.description.references Murray, R. M., Li, Z., Sastry, S. S., 1994. A mathematical Introduction to Robotic Manipulation. CRC Press. es_ES
dc.description.references Nielsen, J., Roth, B., 1999. On the kinematic analysis of robotic mechanisms. The International Journal of Robotics Research 18 (12), 1147-1160. https://doi.org/10.1177/02783649922067771 es_ES
dc.description.references Nikravesh, P. E., 2018. Planar Multibody Dynamics: Formulation, Programming with MATLAB, and Applications. CRC Press. https://doi.org/10.1201/b22302 es_ES
dc.description.references Park, F., Bobrow, J., Ploen, S., 1995. A lie group formulation of robot dynamics. The International Journal of Robotics Research 14 (6), 609-618. https://doi.org/10.1177/027836499501400606 es_ES
dc.description.references Park, F., Choi, J., Ploen, S., 1999. Symbolic formulation of closed chain dynamics in independent coordinates. Mechanism and Machine Theory 34 (5), 731-751. https://doi.org/10.1016/S0094-114X(98)00052-4 es_ES
dc.description.references Shabana, A. A., 2020. Dynamics of Multibody Systems. Cambridge University Press. https://doi.org/10.1017/9781108757553 es_ES
dc.description.references Taghirad, H. D., 2013. Parallel Robots: Mechanics and Control. Springer. https://doi.org/10.1201/b16096 es_ES
dc.description.references Tsai, L. W., 1999. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley-Interscience. es_ES
dc.description.references Yime, E., 2023. Codigos de los ejemplos del articulo tutorial sobre algebra de lie. https://github.com/eyime/Tutorial Lie RIAI es_ES
dc.description.references Zubizarreta, A., Larrea, M., Irigoyen, E., Cabanes, I., Portillo, E., 2018. Real time direct kinematic problem computation of the 3prs robot using neural networks. Neurocomputing 271, 104-114. https://doi.org/10.1016/j.neucom.2017.02.098 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem