- -

Effect of host species on the distribution of mutational fitness effects for an RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of host species on the distribution of mutational fitness effects for an RNA virus

Mostrar el registro completo del ítem

Lalic ., J.; Cuevas, J.; Elena Fito, SF. (2011). Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genetics. 7:1002378-1002378. https://doi.org/10.1371/journal.pgen.1002378

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28358

Ficheros en el ítem

Metadatos del ítem

Título: Effect of host species on the distribution of mutational fitness effects for an RNA virus
Autor: Lalic ., Jasna CUEVAS, J.M Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most ...[+]
Palabras clave: Angiosperm , Article , Controlled study , Distribution of mutational fitness effect , Environmental factor , Gene deletion , Genetic variability , Genotype , Host , Molecular evolution , Nonhuman , Nucleic acid base substitution , Pleiotropy , Potyvirus , RNA virus , Species difference , Tobacco etch potyvirus , Virus cell interaction , Virus mutation , RNA viruses , Solanaceae , Tobacco etch virus
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS Genetics. (issn: 1553-7390 )
DOI: 10.1371/journal.pgen.1002378
Editorial:
Public Library of Science
Versión del editor: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002378
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/
Agradecimientos:
This research was supported by the Spanish Ministry of Science and Innovation grant BFU2009-06993 to SFE. JL and JMC were supported by the JAE program from CSIC. The funders had no role in study design, data collection and ...[+]
Tipo: Artículo

References

Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20(5), 238-244. doi:10.1016/j.tree.2005.02.009

Parrish, C. R., Holmes, E. C., Morens, D. M., Park, E.-C., Burke, D. S., Calisher, C. H., … Daszak, P. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiology and Molecular Biology Reviews, 72(3), 457-470. doi:10.1128/mmbr.00004-08

Holmes, E. C. (2009). The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 40(1), 353-372. doi:10.1146/annurev.ecolsys.110308.120248 [+]
Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20(5), 238-244. doi:10.1016/j.tree.2005.02.009

Parrish, C. R., Holmes, E. C., Morens, D. M., Park, E.-C., Burke, D. S., Calisher, C. H., … Daszak, P. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiology and Molecular Biology Reviews, 72(3), 457-470. doi:10.1128/mmbr.00004-08

Holmes, E. C. (2009). The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 40(1), 353-372. doi:10.1146/annurev.ecolsys.110308.120248

Elena, S. F., & Froissart, R. (2010). New experimental and theoretical approaches towards the understanding of the emergence of viral infections. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1867-1869. doi:10.1098/rstb.2010.0088

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535-544. doi:10.1016/j.tree.2004.07.021

Jones, R. A. C. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141(2), 113-130. doi:10.1016/j.virusres.2008.07.028

Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214

Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10

Duffy, S., Turner, P. E., & Burch, C. L. (2005). Pleiotropic Costs of Niche Expansion in the RNA Bacteriophage Φ6. Genetics, 172(2), 751-757. doi:10.1534/genetics.105.051136

Ferris, M. T., Joyce, P., & Burch, C. L. (2007). High Frequency of Mutations That Expand the Host Range of an RNA Virus. Genetics, 176(2), 1013-1022. doi:10.1534/genetics.106.064634

Agudelo-Romero, P., de la Iglesia, F., & Elena, S. F. (2008). The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 8(6), 806-814. doi:10.1016/j.meegid.2008.07.010

Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.x

Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059

Domingo-Calap, P., Cuevas, J. M., & Sanjuán, R. (2009). The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 5(11), e1000742. doi:10.1371/journal.pgen.1000742

Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R., & Sanjuán, R. (2010). Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics, 185(2), 603-609. doi:10.1534/genetics.110.115162

Elena, & Moya. (1999). Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. Journal of Evolutionary Biology, 12(6), 1078-1088. doi:10.1046/j.1420-9101.1999.00110.x

Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences, 101(22), 8396-8401. doi:10.1073/pnas.0400146101

Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07

Sanjuán, R. (2010). Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1975-1982. doi:10.1098/rstb.2010.0063

Van Opijnen, T., Boerlijst, M. C., & Berkhout, B. (2006). Effects of Random Mutations in the Human Immunodeficiency Virus Type 1 Transcriptional Promoter on Viral Fitness in Different Host Cell Environments. Journal of Virology, 80(13), 6678-6685. doi:10.1128/jvi.02547-05

Hodgins-Davis, A., & Townsend, J. P. (2009). Evolving gene expression: from G to E to G×E. Trends in Ecology & Evolution, 24(12), 649-658. doi:10.1016/j.tree.2009.06.011

Futuyma, D. J., & Moreno, G. (1988). The Evolution of Ecological Specialization. Annual Review of Ecology and Systematics, 19(1), 207-233. doi:10.1146/annurev.es.19.110188.001231

Remold, S. K., & Lenski, R. E. (2001). Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proceedings of the National Academy of Sciences, 98(20), 11388-11393. doi:10.1073/pnas.201140198

Soltis, E. D., & Soltis, P. S. (2000). Plant Molecular Biology, 42(1), 45-75. doi:10.1023/a:1006371803911

Novella, I. S., Zárate, S., Metzgar, D., & Ebendick-Corpus, B. E. (2004). Positive Selection of Synonymous Mutations in Vesicular Stomatitis Virus. Journal of Molecular Biology, 342(5), 1415-1421. doi:10.1016/j.jmb.2004.08.003

Ohta, T. (1992). The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and Systematics, 23(1), 263-286. doi:10.1146/annurev.es.23.110192.001403

Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101-108. doi:10.1016/j.tree.2003.10.013

Martin, G., & Lenormand, T. (2006). THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution, 60(12), 2413-2427. doi:10.1111/j.0014-3820.2006.tb01878.x

Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610-618. doi:10.1038/nrg2146

Wylie, C. S., & Shakhnovich, E. I. (2011). A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proceedings of the National Academy of Sciences, 108(24), 9916-9921. doi:10.1073/pnas.1017572108

Genotype—environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. (1994). Proceedings of the Royal Society of London. Series B: Biological Sciences, 258(1353), 221-227. doi:10.1098/rspb.1994.0166

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution, 10(5), 212-217. doi:10.1016/s0169-5347(00)89061-8

Korona, R. (1999). Genetic Load of the Yeast Saccharomyces cerevisiae under Diverse Environmental Conditions. Evolution, 53(6), 1966. doi:10.2307/2640455

Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355

Fry, J. D., Heinsohn, S. L., & Mackay, T. F. C. (1996). The Contribution of New Mutations to Genotype-Environment Interaction for Fitness in Drosophila melanogaster. Evolution, 50(6), 2316. doi:10.2307/2410700

Elena, S. F., Agudelo-Romero, P., Carrasco, P., Codoñer, F. M., Martín, S., Torres-Barceló, C., & Sanjuán, R. (2008). Experimental evolution of plant RNA viruses. Heredity, 100(5), 478-483. doi:10.1038/sj.hdy.6801088

Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A., & Moury, B. (2006). Different Mutations in the Genome-Linked Protein VPg of Potato virus Y Confer Virulence on the pvr23 Resistance in Pepper. Molecular Plant-Microbe Interactions, 19(5), 557-563. doi:10.1094/mpmi-19-0557

Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.x

Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004

Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020

Lalić, J., Agudelo-Romero, P., Carrasco, P., & Elena, S. F. (2010). Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1997-2007. doi:10.1098/rstb.2010.0044

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem