- -

Obtención de un Modelo Dinámico para un Robot 3RRR Basado en Teoría de Screws

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Obtención de un Modelo Dinámico para un Robot 3RRR Basado en Teoría de Screws

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, Fernando E. es_ES
dc.contributor.author Rodriguez, Benigno A. es_ES
dc.contributor.author Cardona, Manuel es_ES
dc.date.accessioned 2020-05-08T09:27:42Z
dc.date.available 2020-05-08T09:27:42Z
dc.date.issued 2018-09-24
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/142829
dc.description.abstract [EN] In this article a technique to obtain a dynamic model of a 3RRR robot from its kinematic model based on screw theory is proposed, which allows to obtain the open or closed robot kinematics. First the kinematic model is obtained in a compact form and then the dynamic model is obtained from the Euler Lagrange method, with this the simplicity and compactness characteristics are transferred to the dynamic model. The dynamic model is obtained initially for the actuated joints and then for the effector coordinates through its interrelations. To prove the effectiveness of this theoretical derivation the obtained model is tested with a proportional-derivative controller (PD) because it provides a simple control strategy that can be extended later to more effective controllers. es_ES
dc.description.abstract [ES] En este artículo se propone una nueva técnica para la obtención de un modelo dinámico de robots 3RRR a partir de un modelo cinemático basado en teoría de screws, la cual permite obtener la cinemática de un robot ya sea ésta abierta o cerrada. Primero se obtiene el modelo cinemático de una forma compacta y a partir de éste se llega al modelo dinámico aplicando el método de Euler Lagrange, con ello se transfieren las características de simplicidad y compacidad del modelo cinemático al dinámico. El modelo dinámico se obtiene inicialmente para las juntas actuadas y luego para las coordenadas del efector a través de sus interrelaciones. Para comprobar la efectividad de este desarrollo teórico se prueba el modelo obtenido con un controlador proporcional-derivativo (PD) ya que provee de una estrategia de control simple que luego puede ser extendida a controladores más efectivos. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Kinematics es_ES
dc.subject Dynamics es_ES
dc.subject Parallel Robot es_ES
dc.subject Screw Theory es_ES
dc.subject 3 RRR Robot es_ES
dc.subject Cinemática es_ES
dc.subject Dinámica es_ES
dc.subject Robot Paralelo es_ES
dc.subject Teoría de Screws es_ES
dc.subject Robot 3RRR es_ES
dc.title Obtención de un Modelo Dinámico para un Robot 3RRR Basado en Teoría de Screws es_ES
dc.title.alternative Dynamic Model Derivation of a 3RRR Robot Based in Screw Theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2018.8725
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Serrano, FE.; Rodriguez, BA.; Cardona, M. (2018). Obtención de un Modelo Dinámico para un Robot 3RRR Basado en Teoría de Screws. Revista Iberoamericana de Automática e Informática industrial. 15(4):384-390. https://doi.org/10.4995/riai.2018.8725 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2018.8725 es_ES
dc.description.upvformatpinicio 384 es_ES
dc.description.upvformatpfin 390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8725 es_ES
dc.description.references Bartkowiak, R., Woernle, C., 2016. Necessary and sufficient mobility conditions for single-loop overconstrained nh mechanisms. Mechanism and Machine Theory 103, 65 - 84. https://doi.org/10.1016/j.mechmachtheory.2016.03.023 es_ES
dc.description.references Cardona, M. N., 2009. Analisis cinematico de robots paralelos planares 3rrr. Vigesimo novena convencion de centroamerica y panama del IEEE CONCAPAN XXIX. es_ES
dc.description.references Cardona, M. N., Feb 2015. Dimensional synthesis of 3rrr planar parallel robots for well-conditioned workspace. IEEE Latin America Transactions 13 (2), 409-415. DOI: 10.1109/TLA.2015.7055557 https://doi.org/10.1109/TLA.2015.7055557 es_ES
dc.description.references Chen, X., Liu, X.-J., Xie, F., 2015. Screw theory based singularity analysis of lower-mobility parallel robots considering the motion/force transmissibility and constrainability. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/487956 es_ES
dc.description.references Liping, W., Huayang, X., Liwen, G., Yu, Z., 2016. A novel 3-puu parallel mechanism and its kinematic issues. Robotics and Computer-Integrated Manufacturing 42, 86 - 102. https://doi.org/10.1016/j.rcim.2016.05.003 es_ES
dc.description.references Lopez-Custodio, P., Rico, J., Cervantes-Sánchez, J., Pérez-Soto, G., Díez-Martínez, C., 2017. Verification of the higher order kinematic analyses equations. European Journal of Mechanics - A/Solids 61, 198 - 215. https://doi.org/10.1016/j.euromechsol.2016.09.010 es_ES
dc.description.references Mejia, L., Simas, H., Martins, D., 2016. Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six. Mechanism and Machine Theory 105, 58 - 79. https://doi.org/10.1016/j.mechmachtheory.2016.06.020 es_ES
dc.description.references Sun, T., Zhai, Y., Song, Y., Zhang, J., 2016. Kinematic calibration of a 3-dof rotational parallel manipulator using laser tracker. Robotics and Computer-Integrated Manufacturing 41, 78 - 91. https://doi.org/10.1016/j.rcim.2016.02.008 es_ES
dc.description.references Wu, A., Shi, Z., Li, Y., 2015. Formal kinematic analysis of a general 6r manipulator using the screw theory. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/549797 es_ES
dc.description.references Wu, Y., Carricato, M., 2017. Identification and geometric characterization of lie triple screw systems and their exponential images. Mechanism and Machine Theory 107, 305 - 323. https://doi.org/10.1016/j.mechmachtheory.2016.09.020 es_ES
dc.description.references Xiong, T., Chen, L., Ding, J., Wu, Y., Hou, W., 2016. Recognition of kinematic joints of 3d assembly models based on reciprocal screw theory. Mathematical Problems in Engineering. https://doi.org/10.1155/2016/1761968 es_ES
dc.description.references Xu, Y., Zhang, D., Yao, J., Zhao, Y., 2017. Type synthesis of the 2r1t parallel mechanism with two continuous rotational axes and study on the principle of its motion decoupling. Mechanism and Machine Theory 108, 27 - 40. https://doi.org/10.1016/j.mechmachtheory.2016.09.007 es_ES
dc.description.references Zhao, T., Li, E., Bian, H.,Wang, C., Geng, M., 2017. Type synthesis and analysis of rotational parallel mechanisms with a virtual continuous axis. Mechanism and Machine Theory 109, 139 - 154. https://doi.org/10.1016/j.mechmachtheory.2016.09.023 es_ES
dc.description.references Zubizarreta, A., Marcos, M., Cabanes, I., Pinto, C., Portillo, E., 2012. Redundant sensor based control of the 3rrr parallel robot. Mechanism and Machine Theory 54, 1 - 17. https://doi.org/10.1016/j.mechmachtheory.2012.03.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem