- -

Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica

Mostrar el registro completo del ítem

Bonin-Font, F.; Coll Gomila, C.; Oliver Codina, G. (2017). Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica. Revista Iberoamericana de Automática e Informática industrial. 15(1):24-35. https://doi.org/10.4995/riai.2017.8828

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143357

Ficheros en el ítem

Metadatos del ítem

Título: Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica
Otro titulo: Towards Visual Navigation of an Autonomous Underwater Vehicle in Areas with Posidonia Oceanica
Autor: Bonin-Font, Francisco Coll Gomila, Carles Oliver Codina, Gabriel
Fecha difusión:
Resumen:
[ES] Este artículo presenta los resultados de un estudio experimental exhaustivo que determina el tipo de características visuales que presentan una mayor robustez, estabilidad y trazabilidad en imágenes submarinas tomadas ...[+]


[EN] This paper presents an exhaustive, extensive and detailed experimental assessment of different types of visual key-points in terms of robustness, stability and traceability, in images taken in marine areas densely ...[+]
Palabras clave: Autonomous Mobile Robots , Robot Navigation , Robot Vision , Visual Motion , Sistemas de navegación , Robot submarino autónomo , Navegación del robot , Visión del robot , Odometría visual
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2017.8828
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2017.8828
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-58662-R/ES/AUGMENTED REALITY SUBSEA EXPLORATION ASSISTANT (ARSEA): UNA HERRAMIENTA PARA LA INSPECCION ASISTIDA Y LA RECONSTRUCCION 3D ON-LINE DE ENTORNOS SUBMARINOS/
Agradecimientos:
Ministerio de Economía y Competitividad a través del proyecto TIN2014- 58662-R y fondos FEDER
Tipo: Artículo

References

Bonin-Font, F., Massot, M., Negre, P. L., Oliver, G., Guerrero, E., Garcia, E., 2017. Towards a new Methodology to Evaluate the Environmental Impact of a Marine Outfall Using a Lightweight AUV. En: In MTS/IEEE Oceans. https://doi.org/10.1109/OCEANSE.2017.8084578

Bonin-Font, F., Massot-Campos, M., Oliver, G., 2016. Towards Visual Detection, Mapping and Quantification of Posidonia Oceanica using a Lightweight AUV. En: Proc. of IFAC Conference on Control Applications in Marine Systems. pp. 500-505.

Burguera, A., Bonin-Font, F., Oliver, G., 2015. Trajectory-Based Visual Localization in Underwater Surveying Missions. Sensors, MDPI 15 (1), 1708-1735. https://doi.org/10.3390/s150101708 [+]
Bonin-Font, F., Massot, M., Negre, P. L., Oliver, G., Guerrero, E., Garcia, E., 2017. Towards a new Methodology to Evaluate the Environmental Impact of a Marine Outfall Using a Lightweight AUV. En: In MTS/IEEE Oceans. https://doi.org/10.1109/OCEANSE.2017.8084578

Bonin-Font, F., Massot-Campos, M., Oliver, G., 2016. Towards Visual Detection, Mapping and Quantification of Posidonia Oceanica using a Lightweight AUV. En: Proc. of IFAC Conference on Control Applications in Marine Systems. pp. 500-505.

Burguera, A., Bonin-Font, F., Oliver, G., 2015. Trajectory-Based Visual Localization in Underwater Surveying Missions. Sensors, MDPI 15 (1), 1708-1735. https://doi.org/10.3390/s150101708

Carreras, M., Candela, C., Ribas, D., Mallios, A., MagA˜, L., Vidal, E., Palomeras, N., Ridao, P., 2013. SPARUS II, Design of a Lightweight Hovering AUV. Fifth International Workshop in Marine Technology (MARTECH).

Diaz-Almela, E., Duarte, C., 2008. Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Tech. rep., European Commission.

Eustice, R., Pizarro, O., Singh, H., April 2008. Visually Augmented Navigation for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering 33 (2), 103-122. https://doi.org/10.1109/JOE.2008.923547

Eustice, R., Pizarro, O., Singh, H., Howland, J., 2002. UWIT: Underwater Image Toolbox for Optical Image Processing and Mosaicking in MATLAB. En: Proceedings of IEEE International Symposium on Underwater Technology,. pp. 141-145. https://doi.org/10.1109/UT.2002.1002415

Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G., 2016. A Survey on Realtime Motion Estimation Techniques for Underwater Robots. Journal of Real Time Image Processing 11 (4), 693-711. https://doi.org/10.1007/s11554-014-0416-z

Fischler, M., Bolles, R., 1981. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24 (6), 381-395. https://doi.org/10.1145/358669.358692

Geiger, A., Ziegler, J., Stiller, C., June 2011. Stereoscan: Dense 3d reconstruction in real-time. En: IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany. https://doi.org/10.1109/IVS.2011.5940405

Hanley, J., Neil, B. M., 1982. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 143 (1), 521-539. https://doi.org/10.1148/radiology.143.1.7063747

Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press.

Jobson, D., Rahman, Z., Woodell, G., 1997. A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes. IEEE Transactions on Image Processing 6 (7), 965-976. https://doi.org/10.1109/83.597272

Jorda, G., Marba, N., Duarte, C., 2012. Mediterranean Seagrass Vulnerable to Regional Climate Warming. Nature Climate Change, 821-824. https://doi.org/10.1038/nclimate1533

Krig, S., 2014. Computer Vision Metrics. Springer, Ch. Interest Point Detector and Feature Descriptor Survey, pp. 217-282. https://doi.org/10.1007/978-1-4302-5930-5

Lauga, P., Valenzise, G., Chierchia, G., Dufaux, F., September 2014. Improved Tone Mapping Operator for HDR Coding Optimizing the Distortion/Spatial Complexity Trade-off. En: Proceedings of IEEE European Signal Processing Conference. pp. 1607-1611.

Li, Y., Wang, S., Tian, Q., Ding, X., 2015. A Survey of Recent Advances in Visual Feature Detection. Neurocomputing (B), 736-751.

Maida, G. D., Tomasello, A., Luzzu, F., Scannavino, A., Pirrotta, M., Orestano, C., Calvo, S., 2011. Discriminating Between Posidonia Oceanica Meadows and Sand Substratum Using Multibeam Sonar. ICES Journal of Marine Science 68 (1), 12-19. https://doi.org/10.1093/icesjms/fsq130

Matarrese, R., Acquaro, M., Morea, A., Tijani, K., Chiaradia, M., 2008. Applications of Remote Sensing Techniques for Mapping Posidonia Oceanica Meadows. En: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. pp. 906-909. https://doi.org/10.1109/IGARSS.2008.4779870

Montefalcone, M., Rovere, A., Parravicini, V., Albertelli, G., Morri, C., Bianchi, C. N., 2013. Evaluating Change in Seagrass Meadows: A time-framed Comparison of Side Scan Sonar Maps. Aquatic Botany 104, 204-212. https://doi.org/10.1016/j.aquabot.2011.05.009

Moore, A., Allman, J., Goodman, R. M., 1991. A Real-time Neural System for Color Constancy. IEEE Transactions on Neural Networks 2 (2), 237-246. https://doi.org/10.1109/72.80334

Morel, J., Petro, A. B., Sbert, C., 2014. What is the Right Center/Surround for Retinex? En: Proceedings of the International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2014.7025923

Mur-Artal, R., Montiel, J., Tardos, J., October 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31 (5), 1147-1163. https://doi.org/10.1109/TRO.2015.2463671

Negre, P. L., Bonin-Font, F., Oliver, G., May 2016a. Cluster-Based Loop Closing Detection for Underwater SLAM in Feature-Poor Regions. En: Proc. Of IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487416

Negre, P. L., Bonin-Font, F., Oliver, G., 2016b. Global Image Signature for Visual Loop-Closure Detection. Autonomous Robots 40 (8), 1403-1417. https://doi.org/10.1007/s10514-015-9522-4

Scaradozzi, D., Conte, G., de Capua, G., Sorbi, L., Luciani, C., de Cecco, P., Sorci, A., 2009. Innovative Technology for Studying Growth Areas of Posidonia Oceanica. En: Proceedings of the IEEE WorkShop on Environmental, Energy and Structural Monitoring Systems. pp. 71-75. https://doi.org/10.1109/EESMS.2009.5341312

Shertzer, K., Prager, M., 2002. Least Median of Squares: A Suitable Objective Function for Stock Assessment Models. Canadian Journal of Fisheres and Aquatic Sciences 59 (9), 1474-1481 Vol.2.

Short, F., Polidoro, B., Livingstone, S., Carpenter, K., Bandeira, S., Bujang, J., Calumpong, H., Carruthers, T., Coles, R., Dennison, W., Erftemeijer, P., Fortes, M., Freeman, A., Jagtap, T., Kamal, A., Kendrick, G., Kenworthy, W., Nafie, Y. L., Nasution, I., Orth, R., Prathep, A., van Sanciangco, J., Tussenbroek, B., Vergara, S., Waycott, M., Zieman, J., 2012. Estinction Risk Assessment of the World Seagrass Species Biological Conservation. Canadian Journal of Fisheries and Aquatic Sciences 144 (1961-1971).

Wilow-Garage, 2014. Open Source Computer Vision (Open Cv). http://docs.opencv.org/ , function findhomography.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem