- -

Cinemática de un manipulador configurable por medio de la teoría de tornillos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cinemática de un manipulador configurable por medio de la teoría de tornillos

Mostrar el registro completo del ítem

Gallardo-Alvarado, J.; Tinajero-Campo, JH.; Sánchez-Rodríguez, Á. (2020). Cinemática de un manipulador configurable por medio de la teoría de tornillos. Revista Iberoamericana de Automática e Informática industrial. 18(1):58-67. https://doi.org/10.4995/riai.2020.12793

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160619

Ficheros en el ítem

Metadatos del ítem

Título: Cinemática de un manipulador configurable por medio de la teoría de tornillos
Otro titulo: Kinematic of a configurable manipulator using screw theory
Autor: Gallardo-Alvarado, J. Tinajero-Campo, J. H. Sánchez-Rodríguez, Á.
Fecha difusión:
Resumen:
[EN] This paper addresses the kinematic analysis of a redundant parallel manipulator with a configurable platform equipped with two end-effectors. The closure equations of the position analysis generate a system of quadratic ...[+]


[ES] En este trabajo se aborda el análisis cinemático de un m manipulador redundante con una plataforma configurable equipada con dos efectores finales. Las ecuaciones de clausura del análisis de posición generan un sistema ...[+]
Palabras clave: Industrial robotics and robotic manipulators , Multibody systems , Robot kinematics , Robotic systems , Cinemática de robots , Robot industrial y manipuladores robóticos , Sistemas multicuerpo , Sistemas robotizados
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.12793
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.12793
Agradecimientos:
Este trabajo ha sido realizado gracias al apoyo del Consejo Nacional de Ciencia y Tecnología de México, Conacyt, a través de la membresía del Dr. Jaime Gallardo–Alvarado al Sistema Nacional de Investigadores.
Tipo: Artículo

References

Aimedee, F., Gogu, G., Dai, J. S., Bouzgarrou, C., Bouton, N., 2016. Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory 96, 215-224. https://doi.org/10.1016/j.mechmachtheory.2015.07.009

Baron, N., Philippides, A., Rojas, N., 2018. A novel kinematically redundant planar parallel robot manipulator with full rotatability. ASME Journal of Mechanisms and Robotics 11, 1-8. https://doi.org/10.1115/1.4041698

Bonev, I. A., Zlatanov, D., Gosselin, C. M., 2001. Singularity analysis of 3- dof planar parallel mechanisms via screw theory. ASME Journal of Mechanical Design 125, 573-581. https://doi.org/10.1115/1.1582878 [+]
Aimedee, F., Gogu, G., Dai, J. S., Bouzgarrou, C., Bouton, N., 2016. Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory 96, 215-224. https://doi.org/10.1016/j.mechmachtheory.2015.07.009

Baron, N., Philippides, A., Rojas, N., 2018. A novel kinematically redundant planar parallel robot manipulator with full rotatability. ASME Journal of Mechanisms and Robotics 11, 1-8. https://doi.org/10.1115/1.4041698

Bonev, I. A., Zlatanov, D., Gosselin, C. M., 2001. Singularity analysis of 3- dof planar parallel mechanisms via screw theory. ASME Journal of Mechanical Design 125, 573-581. https://doi.org/10.1115/1.1582878

Carbonari, L., Callegari, M., Palmieri, G., Palpacelli, M. C., 2014. A new class of reconfigurable parallel kinematic machines. Mechanism and Machine Theory 79, 173-183. https://doi.org/10.1016/j.mechmachtheory.2014.04.011

Chakarov, D., 2004. Study of the antagonistic stiffness of parallel manipulators with actuation redundancy. Mechanism and Machine Theory 39, 583- 601. https://doi.org/10.1016/j.mechmachtheory.2003.12.001

Dai, J. S., Gogu, G., 2016. Special issue on reconfigurable mechanisms: morphing, metamorphosis and reconfiguration through constraint variations and reconfigurable joints. Mechanism and Machine Theory 96, 213-214. https://doi.org/10.1016/j.mechmachtheory.2015.11.006

Fang, H., Tang, T., Zhang, J., 2019. Kinematic analysis and comparison of a 2r1t redundantly actuated parallel manipulator and its non-redundantly actuated forms. Mechanism and Machine Theory 142, 1-23. https://doi.org/10.1016/j.mechmachtheory.2019.103587

Gallardo-Alvarado, J., 2016. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer International Publishing Switzerland, Switzerland. https://doi.org/10.1007/978-3-319-31126-5

Gallardo-Alvarado, J., Rico-Martínez, J. M., 1998. Screw theory and helicoidal fields. Proceedings of the ASME 1998 Design Engineering Technical Conferences, ASME, cD rom.

Gallardo-Alvarado, J., Rico-Martínez, J. M., 2001. Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36, 213-228. https://doi.org/10.1023/A:1013074907533

Gallardo-Alvarado, J., Tinajero-Campos, J. H., 2019. A parallel manipulator with planar configurable platform and three end-effectors. Mathematical Problems in Engineering Paper 7972837. https://doi.org/10.1155/2019/7972837

Hoevenaars, A. G. L., Gosselin, C., Lambert, P., Herder, J. L., 2017. A systematic approach for the jacobian analysis of parallel manipulators with two end-effectors. Mechanism and Machine Theory 109, 171-194. https://doi.org/10.1016/j.mechmachtheory.2016.10.022

Kang, X., Dai, J. S., 2019. Relevance and transferability for parallel mechanisms with reconfigurable platforms. ASME Journal of Mechanisms and Robotics 11, 031012 (9 pages). https://doi.org/10.1115/1.4042629

Kock, S., Schumacher, W., 1998. A parallel x-y manipulator with actuation redundancy for high-speed and active-stiffness applications. IEEE International Conference on Robotics and Automation, IEEE, Leuven, pp. 2295- 2300.

Kock, S., Schumacher, W., 2000. A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears. IEEE International Conference on Robotics and Automation, IEEE, San Francisco.

Lambert, P., Herder, J. L., 2016. Parallel robots with configurable platforms: fundamental aspects of a new class of robotic architectures. Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, 463-472. https://doi.org/10.1177/0954406215602511

Lambert, P., Herder, J. L., 2019. A 7-DOF redundantly actuated parallel haptic device combining 6-DOF manipulation and 1-DOF grasping. Mechanism and Machine Theory 134, 349-364. https://doi.org/10.1016/j.mechmachtheory.2019.01.002

Landure, J., Gosselin, C., 2018. Kinematic analysis of a novel kinematically redundant spherical parallel manipulator. ASME Journal of Mechanisms and Robotics 10, 1-10. https://doi.org/10.1115/1.4038971

Liu, F., Wu, J., Wang, L., Wang, J., 2014. Determination of the maxima singularity-free zone of 4-rrr redundant parallel manipulators and its application on investigating length ratios of links. Robotica 1, 1-17. https://doi.org/10.1017/S0263574714002720

Ma, X., Zhang, K., Dai, J. S., 2018. Novel spherical-planar and bennett- spherical 6r metamorphic linkages with reconfigurable motion branches. Mechanism and Machine Theory 128, 628-647. https://doi.org/10.1016/j.mechmachtheory.2018.05.001

Mohamed, M. G., Gosselin, C., 2005. Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Transactions on Robotics 21, 277-287. https://doi.org/10.1109/TRO.2004.837234

Mueller, A., 2006. Stiffness control of redundantly actuated parallel manipulators. IEEE International Conference on Robotics and Automation, IEEE, Orlando.

Mueller, A., 2008. Redundant actuation of parallel manipulators. In: Wu, H. (Ed.), Parallel Manipulators, Towards New Applications. INTECH. https://doi.org/10.5772/5427

Qu, H., Zhang, C., Guo, S., 2018. Structural synthesis of a class of kinematically redundant parallel manipulators based on modified G-K criterion and RDOF criterion. Mechanism and Machine Theory 130, 47- 70. https://doi.org/10.1016/j.mechmachtheory.2018.08.008

Schreiber, L. T., Gosselin, C., 2018. Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning. Mechanism and Machine Theory 119, 91-105. https://doi.org/10.1016/j.mechmachtheory.2017.08.022

Verschelde, J., 1999. Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software 25, 251-276. https://doi.org/10.1145/317275.317286

Wu, T.-M., 2005. A study of convergence on the newton-homotopy continuation method. Applied Mathematics and Computation 168, 1169- 174". https://doi.org/10.1016/j.amc.2003.10.068

Wu, T. manipulator -M., 2006. The inverse kinematics problem of spatial 4p3r robot by the homotopy continuation method with an adjustable auxiliary homotopy function. Nonlinear Analysis 64, 2373-2380. https://doi.org/10.1016/j.na.2005.08.021

Ye, W., Fang, Y., Zhang, K., Guo, S., 2014. A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mechanism and Machine Theory 74, 1-9. https://doi.org/10.1016/j.mechmachtheory.2013.11.011

Yi, B.-J., Na, H. Y., Lee, J. H., Hong, Y.-S., Oh, S.-R., Suh, I.-H., Kim, W. K., 2002. Design of a parallel-type gripper mechanism. International Journal of Robotics Research 21, 661-676. https://doi.org/10.1177/027836402322023240

Yi, B. Y., Freeman, R. A., Tesar, D., 1994. Force and stiffness transmision in redundantly actuated mechanisms: the case for a spherical shoulder mechanism. Robotics, Spatial Mechanisma and Mechanical Systems 45, 163-172.

Zhang, K., Dai, J. S., Fang, Y., 2013. Geometric constraint and mobility variation of two 3svpsv metamorphic parallel mechanisms. ASME Journal of Mechanical Design 135, paper 011001. https://doi.org/10.1115/1.4007920

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem