- -

Cinemática de un manipulador configurable por medio de la teoría de tornillos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cinemática de un manipulador configurable por medio de la teoría de tornillos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallardo-Alvarado, J. es_ES
dc.contributor.author Tinajero-Campo, J. H. es_ES
dc.contributor.author Sánchez-Rodríguez, Á. es_ES
dc.date.accessioned 2021-02-03T08:03:34Z
dc.date.available 2021-02-03T08:03:34Z
dc.date.issued 2020-12-23
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/160619
dc.description.abstract [EN] This paper addresses the kinematic analysis of a redundant parallel manipulator with a configurable platform equipped with two end-effectors. The closure equations of the position analysis generate a system of quadratic equations which is solved by applying the Newton-homotopy method. Subsequently, the instantaneous kinematics of the robot is solved by resorting to the theory of screws. The efficiency of the method is such that the calculation of passive joint rates of the robot is not required form the determination of the input-outputn equation of velocity of the parallel manipulator. Numerical examples are compared with the outcome of a commercial software demonstrating the approach correctness. es_ES
dc.description.abstract [ES] En este trabajo se aborda el análisis cinemático de un m manipulador redundante con una plataforma configurable equipada con dos efectores finales. Las ecuaciones de clausura del análisis de posición generan un sistema de ecuaciones cuadráticas el cual se resuelve aplicando Newton-homotopía. Posteriormente, la cinemática instantánea del robot se resuelve recurriendo a la teoría de tornillos. La eficiencia del método es tal que no se requiere del cálculo de las velocidades articulares pasivas del robot para la determinación de la ecuación entrada-salida de velocidad del manipulador paralelo. Ejemplos numéricos se comparan con los resultados de un software comercial lo cual demuestra veracidad del método. es_ES
dc.description.sponsorship Este trabajo ha sido realizado gracias al apoyo del Consejo Nacional de Ciencia y Tecnología de México, Conacyt, a través de la membresía del Dr. Jaime Gallardo–Alvarado al Sistema Nacional de Investigadores. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Industrial robotics and robotic manipulators es_ES
dc.subject Multibody systems es_ES
dc.subject Robot kinematics es_ES
dc.subject Robotic systems es_ES
dc.subject Cinemática de robots es_ES
dc.subject Robot industrial y manipuladores robóticos es_ES
dc.subject Sistemas multicuerpo es_ES
dc.subject Sistemas robotizados es_ES
dc.title Cinemática de un manipulador configurable por medio de la teoría de tornillos es_ES
dc.title.alternative Kinematic of a configurable manipulator using screw theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.12793
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gallardo-Alvarado, J.; Tinajero-Campo, JH.; Sánchez-Rodríguez, Á. (2020). Cinemática de un manipulador configurable por medio de la teoría de tornillos. Revista Iberoamericana de Automática e Informática industrial. 18(1):58-67. https://doi.org/10.4995/riai.2020.12793 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.12793 es_ES
dc.description.upvformatpinicio 58 es_ES
dc.description.upvformatpfin 67 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\12793 es_ES
dc.description.references Aimedee, F., Gogu, G., Dai, J. S., Bouzgarrou, C., Bouton, N., 2016. Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory 96, 215-224. https://doi.org/10.1016/j.mechmachtheory.2015.07.009 es_ES
dc.description.references Baron, N., Philippides, A., Rojas, N., 2018. A novel kinematically redundant planar parallel robot manipulator with full rotatability. ASME Journal of Mechanisms and Robotics 11, 1-8. https://doi.org/10.1115/1.4041698 es_ES
dc.description.references Bonev, I. A., Zlatanov, D., Gosselin, C. M., 2001. Singularity analysis of 3- dof planar parallel mechanisms via screw theory. ASME Journal of Mechanical Design 125, 573-581. https://doi.org/10.1115/1.1582878 es_ES
dc.description.references Carbonari, L., Callegari, M., Palmieri, G., Palpacelli, M. C., 2014. A new class of reconfigurable parallel kinematic machines. Mechanism and Machine Theory 79, 173-183. https://doi.org/10.1016/j.mechmachtheory.2014.04.011 es_ES
dc.description.references Chakarov, D., 2004. Study of the antagonistic stiffness of parallel manipulators with actuation redundancy. Mechanism and Machine Theory 39, 583- 601. https://doi.org/10.1016/j.mechmachtheory.2003.12.001 es_ES
dc.description.references Dai, J. S., Gogu, G., 2016. Special issue on reconfigurable mechanisms: morphing, metamorphosis and reconfiguration through constraint variations and reconfigurable joints. Mechanism and Machine Theory 96, 213-214. https://doi.org/10.1016/j.mechmachtheory.2015.11.006 es_ES
dc.description.references Fang, H., Tang, T., Zhang, J., 2019. Kinematic analysis and comparison of a 2r1t redundantly actuated parallel manipulator and its non-redundantly actuated forms. Mechanism and Machine Theory 142, 1-23. https://doi.org/10.1016/j.mechmachtheory.2019.103587 es_ES
dc.description.references Gallardo-Alvarado, J., 2016. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer International Publishing Switzerland, Switzerland. https://doi.org/10.1007/978-3-319-31126-5 es_ES
dc.description.references Gallardo-Alvarado, J., Rico-Martínez, J. M., 1998. Screw theory and helicoidal fields. Proceedings of the ASME 1998 Design Engineering Technical Conferences, ASME, cD rom. es_ES
dc.description.references Gallardo-Alvarado, J., Rico-Martínez, J. M., 2001. Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36, 213-228. https://doi.org/10.1023/A:1013074907533 es_ES
dc.description.references Gallardo-Alvarado, J., Tinajero-Campos, J. H., 2019. A parallel manipulator with planar configurable platform and three end-effectors. Mathematical Problems in Engineering Paper 7972837. https://doi.org/10.1155/2019/7972837 es_ES
dc.description.references Hoevenaars, A. G. L., Gosselin, C., Lambert, P., Herder, J. L., 2017. A systematic approach for the jacobian analysis of parallel manipulators with two end-effectors. Mechanism and Machine Theory 109, 171-194. https://doi.org/10.1016/j.mechmachtheory.2016.10.022 es_ES
dc.description.references Kang, X., Dai, J. S., 2019. Relevance and transferability for parallel mechanisms with reconfigurable platforms. ASME Journal of Mechanisms and Robotics 11, 031012 (9 pages). https://doi.org/10.1115/1.4042629 es_ES
dc.description.references Kock, S., Schumacher, W., 1998. A parallel x-y manipulator with actuation redundancy for high-speed and active-stiffness applications. IEEE International Conference on Robotics and Automation, IEEE, Leuven, pp. 2295- 2300. es_ES
dc.description.references Kock, S., Schumacher, W., 2000. A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears. IEEE International Conference on Robotics and Automation, IEEE, San Francisco. es_ES
dc.description.references Lambert, P., Herder, J. L., 2016. Parallel robots with configurable platforms: fundamental aspects of a new class of robotic architectures. Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, 463-472. https://doi.org/10.1177/0954406215602511 es_ES
dc.description.references Lambert, P., Herder, J. L., 2019. A 7-DOF redundantly actuated parallel haptic device combining 6-DOF manipulation and 1-DOF grasping. Mechanism and Machine Theory 134, 349-364. https://doi.org/10.1016/j.mechmachtheory.2019.01.002 es_ES
dc.description.references Landure, J., Gosselin, C., 2018. Kinematic analysis of a novel kinematically redundant spherical parallel manipulator. ASME Journal of Mechanisms and Robotics 10, 1-10. https://doi.org/10.1115/1.4038971 es_ES
dc.description.references Liu, F., Wu, J., Wang, L., Wang, J., 2014. Determination of the maxima singularity-free zone of 4-rrr redundant parallel manipulators and its application on investigating length ratios of links. Robotica 1, 1-17. https://doi.org/10.1017/S0263574714002720 es_ES
dc.description.references Ma, X., Zhang, K., Dai, J. S., 2018. Novel spherical-planar and bennett- spherical 6r metamorphic linkages with reconfigurable motion branches. Mechanism and Machine Theory 128, 628-647. https://doi.org/10.1016/j.mechmachtheory.2018.05.001 es_ES
dc.description.references Mohamed, M. G., Gosselin, C., 2005. Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Transactions on Robotics 21, 277-287. https://doi.org/10.1109/TRO.2004.837234 es_ES
dc.description.references Mueller, A., 2006. Stiffness control of redundantly actuated parallel manipulators. IEEE International Conference on Robotics and Automation, IEEE, Orlando. es_ES
dc.description.references Mueller, A., 2008. Redundant actuation of parallel manipulators. In: Wu, H. (Ed.), Parallel Manipulators, Towards New Applications. INTECH. https://doi.org/10.5772/5427 es_ES
dc.description.references Qu, H., Zhang, C., Guo, S., 2018. Structural synthesis of a class of kinematically redundant parallel manipulators based on modified G-K criterion and RDOF criterion. Mechanism and Machine Theory 130, 47- 70. https://doi.org/10.1016/j.mechmachtheory.2018.08.008 es_ES
dc.description.references Schreiber, L. T., Gosselin, C., 2018. Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning. Mechanism and Machine Theory 119, 91-105. https://doi.org/10.1016/j.mechmachtheory.2017.08.022 es_ES
dc.description.references Verschelde, J., 1999. Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software 25, 251-276. https://doi.org/10.1145/317275.317286 es_ES
dc.description.references Wu, T.-M., 2005. A study of convergence on the newton-homotopy continuation method. Applied Mathematics and Computation 168, 1169- 174". https://doi.org/10.1016/j.amc.2003.10.068 es_ES
dc.description.references Wu, T. manipulator -M., 2006. The inverse kinematics problem of spatial 4p3r robot by the homotopy continuation method with an adjustable auxiliary homotopy function. Nonlinear Analysis 64, 2373-2380. https://doi.org/10.1016/j.na.2005.08.021 es_ES
dc.description.references Ye, W., Fang, Y., Zhang, K., Guo, S., 2014. A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mechanism and Machine Theory 74, 1-9. https://doi.org/10.1016/j.mechmachtheory.2013.11.011 es_ES
dc.description.references Yi, B.-J., Na, H. Y., Lee, J. H., Hong, Y.-S., Oh, S.-R., Suh, I.-H., Kim, W. K., 2002. Design of a parallel-type gripper mechanism. International Journal of Robotics Research 21, 661-676. https://doi.org/10.1177/027836402322023240 es_ES
dc.description.references Yi, B. Y., Freeman, R. A., Tesar, D., 1994. Force and stiffness transmision in redundantly actuated mechanisms: the case for a spherical shoulder mechanism. Robotics, Spatial Mechanisma and Mechanical Systems 45, 163-172. es_ES
dc.description.references Zhang, K., Dai, J. S., Fang, Y., 2013. Geometric constraint and mobility variation of two 3svpsv metamorphic parallel mechanisms. ASME Journal of Mechanical Design 135, paper 011001. https://doi.org/10.1115/1.4007920 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem